A081437
Diagonal in array of n-gonal numbers A081422.
Original entry on oeis.org
1, 10, 33, 76, 145, 246, 385, 568, 801, 1090, 1441, 1860, 2353, 2926, 3585, 4336, 5185, 6138, 7201, 8380, 9681, 11110, 12673, 14376, 16225, 18226, 20385, 22708, 25201, 27870, 30721, 33760, 36993, 40426, 44065, 47916, 51985, 56278, 60801, 65560
Offset: 0
-
List([0..40], n-> (n+1)^3+n*(n+1)); # G. C. Greubel, Aug 14 2019
-
[n^3+4*n^2+4*n+1: n in [0..50]]; // Vincenzo Librandi, Aug 08 2013
-
a:=n->sum(n*k, k=0..n):seq(a(n)+sum(n*k, k=2..n), n=1..40); # Zerinvary Lajos, Jun 10 2008
a:=n->sum(-2+sum(2+sum(2, j=1..n),j=1..n),j=1..n):seq(a(n)/2,n=1..40); # Zerinvary Lajos, Dec 06 2008
-
Table[n^3 + 4 n^2 + 4n + 1, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 10, 33, 76}, 40] (* Harvey P. Dale, Jan 24 2012 *)
CoefficientList[Series[(1 + 5 x - 7 x^2 + x^3)/(1 - x)^5, {x, 0, 60}], x] (* Vincenzo Librandi, Aug 08 2013 *)
-
vector(40, n, n--; (n+1)^3+n*(n+1)) \\ G. C. Greubel, Aug 14 2019
-
[(n+1)^3+n*(n+1) for n in (0..40)] # G. C. Greubel, Aug 14 2019
A027621
a(n) = n + (n+1)^2 + (n+2)^3 + (n+3)^4.
Original entry on oeis.org
90, 288, 700, 1440, 2646, 4480, 7128, 10800, 15730, 22176, 30420, 40768, 53550, 69120, 87856, 110160, 136458, 167200, 202860, 243936, 290950, 344448, 405000, 473200, 549666, 635040, 729988, 835200, 951390, 1079296, 1219680
Offset: 0
-
[n + (n+1)^2 + (n+2)^3 + (n+3)^4: n in [0..40]]; // Vincenzo Librandi, Aug 05 2011
-
seq( (n+3)^2*(n^2 + 7*n + 10), n=0..40); # G. C. Greubel, Aug 05 2022
-
Table[Total[Table[(n+i)^(i+1),{i,0,3}]],{n,0,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{90,288,700,1440,2646},40] (* Harvey P. Dale, Jun 08 2017 *)
-
[i+(i+1)^2+(i+2)^3+(i+3)^4 for i in range(0,40)] # Zerinvary Lajos, Jul 03 2008
A027622
a(n) = n + (n+1)^2 + (n+2)^3 + (n+3)^4 + (n+4)^5.
Original entry on oeis.org
1114, 3413, 8476, 18247, 35414, 63529, 107128, 171851, 264562, 393469, 568244, 800143, 1102126, 1488977, 1977424, 2586259, 3336458, 4251301, 5356492, 6680279, 8253574, 10110073, 12286376, 14822107, 17760034, 21146189, 25029988, 29464351, 34505822, 40214689
Offset: 0
-
[n+(n+1)^2+(n+2)^3+(n+3)^4+(n+4)^5: n in [0..30]]; // Vincenzo Librandi, Dec 28 2010
-
seq( add((n+j)^(j+1), j=0..4), n=0..30); # G. C. Greubel, Aug 05 2022
-
Table[n +(n+1)^2 +(n+2)^3 +(n+3)^4 +(n+4)^5, {n, 0, 29}] (* Alonso del Arte, Nov 22 2016 *)
Table[ReleaseHold@ Total@ MapIndexed[#1^First@ #2 &, Rest@ FactorList[ Pochhammer[Hold@ n, 5]][[All, 1]]], {n, 0, 29}] (* or *)
CoefficientList[Series[(1114 -3271x +4708x^2 -3694x^3 +1522x^4 -259x^5)/(1-x)^6, {x, 0, 29}], x] (* Michael De Vlieger, Dec 05 2016 *)
Table[Total[Table[(n+k)^(k+1),{k,0,4}]],{n,0,30}] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1}, {1114,3413,8476,18247,35414,63529}, 30] (* Harvey P. Dale, Aug 04 2022 *)
-
Vec((1114-3271*x+4708*x^2-3694*x^3+1522*x^4-259*x^5) / (1-x)^6 + O(x^30)) \\ Colin Barker, Dec 05 2016
-
[sum((n+j)^(j+1) for j in (0..4)) for n in (0..30)] # G. C. Greubel, Aug 05 2022
A379587
Array read by ascending antidiagonals: A(n, k) = (k^n - 1)^2/(k - 1), with k >= 2.
Original entry on oeis.org
0, 1, 0, 9, 2, 0, 49, 32, 3, 0, 225, 338, 75, 4, 0, 961, 3200, 1323, 144, 5, 0, 3969, 29282, 21675, 3844, 245, 6, 0, 16129, 264992, 348843, 97344, 9245, 384, 7, 0, 65025, 2389298, 5589675, 2439844, 335405, 19494, 567, 8, 0, 261121, 21516800, 89467563, 61027344, 12090125, 960000, 37303, 800, 9, 0
Offset: 0
The array begins as:
0, 0, 0, 0, 0, 0, ...
1, 2, 3, 4, 5, 6, ...
9, 32, 75, 144, 245, 384, ...
49, 338, 1323, 3844, 9245, 19494, ...
225, 3200, 21675, 97344, 335405, 960000, ...
961, 29282, 348843, 2439844, 12090125, 47073606, ...
...
-
A[n_,k_]:=(k^n-1)^2/(k-1); Table[A[n-k+2,k],{n,0,9},{k,2,n+2}]//Flatten
Original entry on oeis.org
0, 9, 32, 75, 144, 245, 384, 567, 800, 1089, 1440, 1859, 2352, 2925, 3584, 4335, 5184, 6137, 7200, 8379, 9680, 11109, 12672, 14375, 16224, 18225, 20384, 22707, 25200, 27869, 30720, 33759, 36992, 40425, 44064, 47915, 51984, 56277, 60800, 65559
Offset: 0
-
Table[n(n+2)^2,{n,0,60}] (* Vladimir Joseph Stephan Orlovsky, Apr 12 2011 *)
CoefficientList[Series[x (9-4x+x^2)/(1-x)^4,{x,0,50}],x] (* or *) LinearRecurrence[{4,-6,4,-1},{0,9,32,75},50] (* Harvey P. Dale, Aug 25 2023 *)
A348462
Size of largest bipartite biregular Moore graph of diameter 6 and degrees n and 2.
Original entry on oeis.org
12, 35, 78, 147, 248
Offset: 2
- G. Araujo-Pardo, C. Dalfó, M. Á. Fiol and N. López, Bipartite biregular Moore graphs, arXiv:2103.11443 [math.CO], 2021.
- G. Araujo-Pardo, C. Dalfó, M. Á. Fiol and N. López, Bipartite biregular Moore graphs, Discrete Math., 334 (2021), # 112582.
A172176
Triangle T(n, k) = 1 + (n + k - n*k)*(2*n - k - n*(n-k)), read by rows.
Original entry on oeis.org
1, 2, 2, 1, 2, 1, -8, 0, 0, -8, -31, -4, 5, -4, -31, -74, -10, 22, 22, -10, -74, -143, -18, 57, 82, 57, -18, -143, -244, -28, 116, 188, 188, 116, -28, -244, -383, -40, 205, 352, 401, 352, 205, -40, -383, -566, -54, 330, 586, 714, 714, 586, 330, -54, -566
Offset: 0
Triangle begins as:
1;
2, 2;
1, 2, 1;
-8, 0, 0, -8;
-31, -4, 5, -4, -31;
-74, -10, 22, 22, -10, -74;
-143, -18, 57, 82, 57, -18, -143;
-244, -28, 116, 188, 188, 116, -28, -244;
-383, -40, 205, 352, 401, 352, 205, -40, -383;
-566, -54, 330, 586, 714, 714, 586, 330, -54, -566;
-799, -70, 497, 902, 1145, 1226, 1145, 902, 497, -70, -799;
-
[1 + (n-(n-1)*k)*(n-(n-1)*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 26 2022
-
A172176:= proc(n,m) 1+(n+m-n*m)*(2*n-m-n*(n-m)); end proc:
seq(seq(A172176(n,m), m=0..n), n=0..12);
-
T[n_, k_]= 1 + (n-(n-1)*k)*(n-(n-1)*(n-k));
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
-
def A172176(n,k): return 1 + (n-(n-1)*k)*(n-(n-1)*(n-k))
flatten([[A172176(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 26 2022
A325173
Perfect squares of the form a + b^2 + c^3, where a,b,c are consecutive numbers.
Original entry on oeis.org
9, 144, 1089, 5184, 18225, 51984, 127449, 278784, 558009, 1040400, 1830609, 3069504, 4941729, 7683984, 11594025, 17040384, 24472809, 34433424, 47568609, 64641600, 86545809, 114318864, 149157369, 192432384, 245705625, 310746384, 389549169, 484352064, 597655809, 732243600
Offset: 1
9 = 0 + 1^2 + 2^3. 0,1,2 are consecutive numbers and 9 is a perfect square. Hence, 9 is a member of the sequence.
18225 = 24 + 25^2 + 26^3. 24,25,26 are consecutive numbers and 18225 is a perfect square. Hence 18225 is a member of the sequence.
-
a(n) = n^2*(2 + n^2)^2 \\ David A. Corneth, Sep 11 2019
-
Vec(9*x*(1 + x)*(1 + 8*x + 22*x^2 + 8*x^3 + x^4) / (1 - x)^7 + O(x^40)) \\ Colin Barker, Sep 11 2019
Showing 1-8 of 8 results.
Comments