cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A081437 Diagonal in array of n-gonal numbers A081422.

Original entry on oeis.org

1, 10, 33, 76, 145, 246, 385, 568, 801, 1090, 1441, 1860, 2353, 2926, 3585, 4336, 5185, 6138, 7201, 8380, 9681, 11110, 12673, 14376, 16225, 18226, 20385, 22708, 25201, 27870, 30721, 33760, 36993, 40426, 44065, 47916, 51985, 56278, 60801, 65560
Offset: 0

Views

Author

Paul Barry, Mar 21 2003

Keywords

Comments

One of a family of sequences with palindromic generators.
For q a prime power, a(q-1) = q^3 + q^2 - q is the number of pairs of commuting nilpotent 2*2 matrices with coefficients in GF(q). (Proof: the zero matrix commutes with all q^2 nilpotent matrices, there are q^2-1 nonzero nilpotent matrices, all conjugate, each commuting with q nilpotent matrices.) - Mark Wildon, Jun 20 2017
Also the cyclomatic number (= circuit rank) of the n+1 X n+1 rook graph. - Eric W. Weisstein, Jun 20 2017

Crossrefs

Equals A027620(n-1) + 1.

Programs

  • GAP
    List([0..40], n-> (n+1)^3+n*(n+1)); # G. C. Greubel, Aug 14 2019
  • Magma
    [n^3+4*n^2+4*n+1: n in [0..50]]; // Vincenzo Librandi, Aug 08 2013
    
  • Maple
    a:=n->sum(n*k, k=0..n):seq(a(n)+sum(n*k, k=2..n), n=1..40); # Zerinvary Lajos, Jun 10 2008
    a:=n->sum(-2+sum(2+sum(2, j=1..n),j=1..n),j=1..n):seq(a(n)/2,n=1..40); # Zerinvary Lajos, Dec 06 2008
  • Mathematica
    Table[n^3 + 4 n^2 + 4n + 1, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 10, 33, 76}, 40] (* Harvey P. Dale, Jan 24 2012 *)
    CoefficientList[Series[(1 + 5 x - 7 x^2 + x^3)/(1 - x)^5, {x, 0, 60}], x] (* Vincenzo Librandi, Aug 08 2013 *)
  • PARI
    vector(40, n, n--; (n+1)^3+n*(n+1)) \\ G. C. Greubel, Aug 14 2019
    
  • Sage
    [(n+1)^3+n*(n+1) for n in (0..40)] # G. C. Greubel, Aug 14 2019
    

Formula

a(n) = n^3 + 4*n^2 + 4*n + 1.
G.f.: (1 +5*x -7*x^2 +x^3)/(1-x)^5.
a(0)=1, a(1)=10, a(2)=33, a(3)=76; for n>3, a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) -a(n-4). - Harvey P. Dale, Jan 24 2012
E.g.f.: (1 +9*x +7*x^2 +x^3)*exp(x). - G. C. Greubel, Aug 14 2019

A027621 a(n) = n + (n+1)^2 + (n+2)^3 + (n+3)^4.

Original entry on oeis.org

90, 288, 700, 1440, 2646, 4480, 7128, 10800, 15730, 22176, 30420, 40768, 53550, 69120, 87856, 110160, 136458, 167200, 202860, 243936, 290950, 344448, 405000, 473200, 549666, 635040, 729988, 835200, 951390, 1079296, 1219680
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n + (n+1)^2 + (n+2)^3 + (n+3)^4: n in [0..40]]; // Vincenzo Librandi, Aug 05 2011
  • Maple
    seq( (n+3)^2*(n^2 + 7*n + 10), n=0..40); # G. C. Greubel, Aug 05 2022
  • Mathematica
    Table[Total[Table[(n+i)^(i+1),{i,0,3}]],{n,0,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{90,288,700,1440,2646},40] (* Harvey P. Dale, Jun 08 2017 *)
  • Sage
    [i+(i+1)^2+(i+2)^3+(i+3)^4 for i in range(0,40)] # Zerinvary Lajos, Jul 03 2008
    

Formula

G.f.: 16/(1-x) + 16/(1-x)^2 + 16/(1-x)^3 + 18/(1-x)^4 + 24/(1-x)^5. - R. J. Mathar, Feb 22 2008
a(n) = (n+3)^2*(n^2 + 7*n + 10). - Bruno Berselli, Aug 05 2011
E.g.f.: (90 + 198*x + 107*x^2 + 19*x^3 + x^4)*exp(x). - G. C. Greubel, Aug 05 2022

A027622 a(n) = n + (n+1)^2 + (n+2)^3 + (n+3)^4 + (n+4)^5.

Original entry on oeis.org

1114, 3413, 8476, 18247, 35414, 63529, 107128, 171851, 264562, 393469, 568244, 800143, 1102126, 1488977, 1977424, 2586259, 3336458, 4251301, 5356492, 6680279, 8253574, 10110073, 12286376, 14822107, 17760034, 21146189, 25029988, 29464351, 34505822, 40214689
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n+(n+1)^2+(n+2)^3+(n+3)^4+(n+4)^5: n in [0..30]]; // Vincenzo Librandi, Dec 28 2010
    
  • Maple
    seq( add((n+j)^(j+1), j=0..4), n=0..30); # G. C. Greubel, Aug 05 2022
  • Mathematica
    Table[n +(n+1)^2 +(n+2)^3 +(n+3)^4 +(n+4)^5, {n, 0, 29}] (* Alonso del Arte, Nov 22 2016 *)
    Table[ReleaseHold@ Total@ MapIndexed[#1^First@ #2 &, Rest@ FactorList[ Pochhammer[Hold@ n, 5]][[All, 1]]], {n, 0, 29}] (* or *)
    CoefficientList[Series[(1114 -3271x +4708x^2 -3694x^3 +1522x^4 -259x^5)/(1-x)^6, {x, 0, 29}], x] (* Michael De Vlieger, Dec 05 2016 *)
    Table[Total[Table[(n+k)^(k+1),{k,0,4}]],{n,0,30}] (* or *) LinearRecurrence[{6,-15,20,-15,6,-1}, {1114,3413,8476,18247,35414,63529}, 30] (* Harvey P. Dale, Aug 04 2022 *)
  • PARI
    Vec((1114-3271*x+4708*x^2-3694*x^3+1522*x^4-259*x^5) / (1-x)^6 + O(x^30)) \\ Colin Barker, Dec 05 2016
    
  • SageMath
    [sum((n+j)^(j+1) for j in (0..4)) for n in (0..30)] # G. C. Greubel, Aug 05 2022

Formula

From Colin Barker, Dec 05 2016: (Start)
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>5.
G.f.: (1114-3271*x+4708*x^2-3694*x^3+1522*x^4-259*x^5) / (1-x)^6.
(End)
E.g.f.: (1114 +2299*x +1382*x^2 +324*x^3 +31*x^4 +x^5)*exp(x). - G. C. Greubel, Aug 05 2022

A379587 Array read by ascending antidiagonals: A(n, k) = (k^n - 1)^2/(k - 1), with k >= 2.

Original entry on oeis.org

0, 1, 0, 9, 2, 0, 49, 32, 3, 0, 225, 338, 75, 4, 0, 961, 3200, 1323, 144, 5, 0, 3969, 29282, 21675, 3844, 245, 6, 0, 16129, 264992, 348843, 97344, 9245, 384, 7, 0, 65025, 2389298, 5589675, 2439844, 335405, 19494, 567, 8, 0, 261121, 21516800, 89467563, 61027344, 12090125, 960000, 37303, 800, 9, 0
Offset: 0

Views

Author

Stefano Spezia, Dec 26 2024

Keywords

Examples

			The array begins as:
    0,     0,      0,       0,        0,        0, ...
    1,     2,      3,       4,        5,        6, ...
    9,    32,     75,     144,      245,      384, ...
   49,   338,   1323,    3844,     9245,    19494, ...
  225,  3200,  21675,   97344,   335405,   960000, ...
  961, 29282, 348843, 2439844, 12090125, 47073606, ...
  ...
		

Crossrefs

Cf. A027620, A060867 (k=2), A060868 (k=3), A060869 (k=4), A060870 (k=5), A060871 (k=7), A361475, A379588 (antidiagonal sums).

Programs

  • Mathematica
    A[n_,k_]:=(k^n-1)^2/(k-1); Table[A[n-k+2,k],{n,0,9},{k,2,n+2}]//Flatten

Formula

G.f. of column k: (1 - k)*x*(1 + k*x)/((1 - x)*(1 - k*x)*(1 - k^2*x)).
E.g.f. of column k: exp(x)*(1 - 2*exp((k-1)*x) + exp((k^2-1)*x))/(k - 1).
A(2, n) = A027620(n-2) for n > 1.

A152619 n*(n+2)^2.

Original entry on oeis.org

0, 9, 32, 75, 144, 245, 384, 567, 800, 1089, 1440, 1859, 2352, 2925, 3584, 4335, 5184, 6137, 7200, 8379, 9680, 11109, 12672, 14375, 16224, 18225, 20384, 22707, 25200, 27869, 30720, 33759, 36992, 40425, 44064, 47915, 51984, 56277, 60800, 65559
Offset: 0

Views

Author

Philippe Deléham, Dec 09 2008

Keywords

Programs

  • Mathematica
    Table[n(n+2)^2,{n,0,60}] (* Vladimir Joseph Stephan Orlovsky, Apr 12 2011 *)
    CoefficientList[Series[x (9-4x+x^2)/(1-x)^4,{x,0,50}],x] (* or *) LinearRecurrence[{4,-6,4,-1},{0,9,32,75},50] (* Harvey P. Dale, Aug 25 2023 *)

Formula

a(n) = A027620(n-1), n>0.
G.f.: x(9-4x+x^2)/(1-x)^4. [From R. J. Mathar, Dec 10 2008]

A348462 Size of largest bipartite biregular Moore graph of diameter 6 and degrees n and 2.

Original entry on oeis.org

12, 35, 78, 147, 248
Offset: 2

Views

Author

N. J. A. Sloane, Oct 31 2021

Keywords

Comments

a(7) >= 387, a(8) = 570, a(9) = 803, a(10) = 1092.

Crossrefs

Formula

Empirical observation: For the terms a(2)-a(6) and a(8)-a(10) a(n) = A081437(n-1) + 2. It is unknown whether this is also valid for n = 7 and for n > 10. - Hugo Pfoertner, Oct 31 2021
a(n) <= A027620(n-2) + 3 = A081437(n-1) + 2 (the Moore bound). - Pontus von Brömssen, Oct 31 2021

A172176 Triangle T(n, k) = 1 + (n + k - n*k)*(2*n - k - n*(n-k)), read by rows.

Original entry on oeis.org

1, 2, 2, 1, 2, 1, -8, 0, 0, -8, -31, -4, 5, -4, -31, -74, -10, 22, 22, -10, -74, -143, -18, 57, 82, 57, -18, -143, -244, -28, 116, 188, 188, 116, -28, -244, -383, -40, 205, 352, 401, 352, 205, -40, -383, -566, -54, 330, 586, 714, 714, 586, 330, -54, -566
Offset: 0

Views

Author

Roger L. Bagula, Jan 28 2010

Keywords

Examples

			Triangle begins as:
     1;
     2,   2;
     1,   2,   1;
    -8,   0,   0,  -8;
   -31,  -4,   5,  -4,  -31;
   -74, -10,  22,  22,  -10,  -74;
  -143, -18,  57,  82,   57,  -18, -143;
  -244, -28, 116, 188,  188,  116,  -28, -244;
  -383, -40, 205, 352,  401,  352,  205,  -40, -383;
  -566, -54, 330, 586,  714,  714,  586,  330,  -54, -566;
  -799, -70, 497, 902, 1145, 1226, 1145,  902,  497,  -70, -799;
		

Crossrefs

Programs

  • Magma
    [1 + (n-(n-1)*k)*(n-(n-1)*(n-k)): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 26 2022
    
  • Maple
    A172176:= proc(n,m) 1+(n+m-n*m)*(2*n-m-n*(n-m)); end proc:
    seq(seq(A172176(n,m), m=0..n), n=0..12);
  • Mathematica
    T[n_, k_]= 1 + (n-(n-1)*k)*(n-(n-1)*(n-k));
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
  • SageMath
    def A172176(n,k): return 1 + (n-(n-1)*k)*(n-(n-1)*(n-k))
    flatten([[A172176(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 26 2022

Formula

T(n, k) = 1 + (n-(n-1)*k)*(n-(n-1)*(n-k)).
T(n, n-k) = T(n, k).
T(n, 0) = 1 - A027620(n-3).
T(n, 1) = -A028552(n-3).
T(n, 2) = A033445(n-2).
Sum_{k=0..n} T(n, k) = (n+1)*(n^4 - 9*n^3 + 15*n^2 - n + 6)/6.

A325173 Perfect squares of the form a + b^2 + c^3, where a,b,c are consecutive numbers.

Original entry on oeis.org

9, 144, 1089, 5184, 18225, 51984, 127449, 278784, 558009, 1040400, 1830609, 3069504, 4941729, 7683984, 11594025, 17040384, 24472809, 34433424, 47568609, 64641600, 86545809, 114318864, 149157369, 192432384, 245705625, 310746384, 389549169, 484352064, 597655809, 732243600
Offset: 1

Views

Author

Philip Mizzi, Sep 05 2019

Keywords

Examples

			9 = 0 + 1^2 + 2^3. 0,1,2 are consecutive numbers and 9 is a perfect square. Hence, 9 is a member of the sequence.
18225 = 24 + 25^2 + 26^3. 24,25,26 are consecutive numbers and 18225 is a perfect square. Hence 18225 is a member of the sequence.
		

Crossrefs

Intersection of A000290 and A027620.
Cf. A005563 (the indices n that give these squares), A054602.

Programs

  • PARI
    a(n) = n^2*(2 + n^2)^2 \\ David A. Corneth, Sep 11 2019
    
  • PARI
    Vec(9*x*(1 + x)*(1 + 8*x + 22*x^2 + 8*x^3 + x^4) / (1 - x)^7 + O(x^40)) \\ Colin Barker, Sep 11 2019

Formula

a(n) = A000290(A054602(n)). - Michel Marcus, Sep 05 2019
From Colin Barker, Sep 05 2019: (Start)
G.f.: 9*x*(1 + x)*(1 + 8*x + 22*x^2 + 8*x^3 + x^4) / (1 - x)^7.
a(n) = n^2*(2 + n^2)^2.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
E.g.f.: exp(x)*x*(9 + 63*x + 114*x^2 + 69*x^3 + 15*x^4 + x^5). - Conjectured by Stefano Spezia, Sep 05 2019 after Colin Barker
From Chai Wah Wu, Sep 10 2019: (Start)
Above conjectures are true. Proof: k + (k+1)^2 + (k+2)^3 = (k+1)*(k+3)^2 and thus is a perfect square if and only if k+1 = n^2 is a perfect square. This implies that (k+1)*(k+3)^2 = n^2*(n^2+2)^2.
(End)
Showing 1-8 of 8 results.