cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A027620 a(n) = n + (n+1)^2 + (n+2)^3.

Original entry on oeis.org

9, 32, 75, 144, 245, 384, 567, 800, 1089, 1440, 1859, 2352, 2925, 3584, 4335, 5184, 6137, 7200, 8379, 9680, 11109, 12672, 14375, 16224, 18225, 20384, 22707, 25200, 27869, 30720, 33759, 36992, 40425, 44064, 47915, 51984, 56277, 60800
Offset: 0

Views

Author

Keywords

Comments

Numbers n > 0 such that x^3 + 2*x^2 + n factors over the integers. - James R. Buddenhagen, Apr 19 2005

Crossrefs

Programs

Formula

a(n) = (n+1)*(n+3)^2. - Zerinvary Lajos, Sep 24 2006, corrected Dec 21 2010
G.f.: (9 - 4*x + x^2)/(1 - x)^4. - R. J. Mathar, Dec 21 2010
a(n) = coefficient of x^3 in the Maclaurin expansion of -1/((n+3)*x^2 + (n+3)*x + 1). - Francesco Daddi, Aug 04 2011
E.g.f.: (9 + 23*x + 10*x^2 + x^3)*exp(x). - G. C. Greubel, Aug 05 2022

A027621 a(n) = n + (n+1)^2 + (n+2)^3 + (n+3)^4.

Original entry on oeis.org

90, 288, 700, 1440, 2646, 4480, 7128, 10800, 15730, 22176, 30420, 40768, 53550, 69120, 87856, 110160, 136458, 167200, 202860, 243936, 290950, 344448, 405000, 473200, 549666, 635040, 729988, 835200, 951390, 1079296, 1219680
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [n + (n+1)^2 + (n+2)^3 + (n+3)^4: n in [0..40]]; // Vincenzo Librandi, Aug 05 2011
  • Maple
    seq( (n+3)^2*(n^2 + 7*n + 10), n=0..40); # G. C. Greubel, Aug 05 2022
  • Mathematica
    Table[Total[Table[(n+i)^(i+1),{i,0,3}]],{n,0,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{90,288,700,1440,2646},40] (* Harvey P. Dale, Jun 08 2017 *)
  • Sage
    [i+(i+1)^2+(i+2)^3+(i+3)^4 for i in range(0,40)] # Zerinvary Lajos, Jul 03 2008
    

Formula

G.f.: 16/(1-x) + 16/(1-x)^2 + 16/(1-x)^3 + 18/(1-x)^4 + 24/(1-x)^5. - R. J. Mathar, Feb 22 2008
a(n) = (n+3)^2*(n^2 + 7*n + 10). - Bruno Berselli, Aug 05 2011
E.g.f.: (90 + 198*x + 107*x^2 + 19*x^3 + x^4)*exp(x). - G. C. Greubel, Aug 05 2022

A027830 Numbers k such that k + (k+1)^2 + (k+2)^3 + (k+3)^4 + (k+4)^5 is prime.

Original entry on oeis.org

1, 7, 11, 25, 35, 43, 45, 47, 51, 53, 57, 63, 65, 81, 91, 103, 113, 117, 121, 143, 149, 169, 173, 191, 193, 199, 201, 211, 213, 225, 235, 247, 253, 255, 263, 269, 299, 331, 333, 355, 357, 359, 373, 385, 387, 395, 399, 403, 411, 445, 453, 495, 519, 537, 579, 599
Offset: 1

Views

Author

Keywords

Comments

Numbers k such that A027622(k) is prime.

Examples

			k=1: k + (k+1)^2 + (k+2)^3 + (k+3)^4 + (k+4)^5 = 3413 = A027886(1),
k=7: k + (k+1)^2 + (k+2)^3 + (k+3)^4 + (k+4)^5 = 171851 = A027886(2),
k=11: k + (k+1)^2 + (k+2)^3 + (k+3)^4 + (k+4)^5 = 800143 = A027886(3).
		

Crossrefs

Programs

  • Magma
    [n: n in [0..1000] |IsPrime(n+(n+1)^2+(n+2)^3+(n+3)^4+(n+4)^5)]; // Vincenzo Librandi, Nov 20 2010
    
  • Mathematica
    With[{c=Total[Table[(#+i)^(i+1),{i,0,4}]]},Select[Range[600],PrimeQ[c]&]] (* Harvey P. Dale, May 07 2012 *)
  • PARI
    is(n)=isprime(n+(n+1)^2+(n+2)^3+(n+3)^4+(n+4)^5) \\ Charles R Greathouse IV, Jun 13 2017

Extensions

Edited by N. J. A. Sloane, May 21 2008 at the suggestion of R. J. Mathar
Showing 1-3 of 3 results.