cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027626 Denominator of n*(n+5)/((n+2)*(n+3)).

Original entry on oeis.org

1, 2, 10, 5, 7, 28, 12, 15, 55, 22, 26, 91, 35, 40, 136, 51, 57, 190, 70, 77, 253, 92, 100, 325, 117, 126, 406, 145, 155, 496, 176, 187, 595, 210, 222, 703, 247, 260, 820, 287, 301, 946, 330, 345, 1081, 376, 392, 1225, 425, 442, 1378, 477, 495, 1540, 532, 551
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [Denominator(n*(n+5)/((n+2)*(n+3))): n in [0..60]]; // Vincenzo Librandi, Mar 04 2014
    
  • Mathematica
    CoefficientList[Series[(1+2*x+10*x^2+2*x^3+x^4-2*x^5+x^8)/(1-x^3)^3, {x,0,50}], x] (* Vincenzo Librandi, Mar 04 2014 *)
  • PARI
    a(n) = numerator((n+2)*(n+3)/6); \\ Altug Alkan, Apr 18 2018
    
  • SageMath
    [numerator(binomial(n+3,2)/3) for n in (0..60)] # G. C. Greubel, Aug 04 2022

Formula

a(n) = GCD of n-th and (n+1)st tetrahedral numbers (A000292). - Ross La Haye, Sep 13 2003
G.f.: (1 +2*x +10*x^2 +2*x^3 +x^4 -2*x^5 +x^8)/(1-x^3)^3.
a(n) = A234041(n+1) = A107711(n+4,3) = C(n+3,2)*gcd(n+4,3)/3 for n >= 0. See the o.g.f. of A234041. - Wolfdieter Lang, Feb 26 2014
a(n) = numerator of (n+2)*(n+3)/6. - Altug Alkan, Apr 18 2018
Sum_{n>=0} 1/a(n) = 5 - 4*Pi/(3*sqrt(3)). - Amiram Eldar, Aug 11 2022
a(n) = (n + 2)*(n + 3)*(5 - 2*A061347(n+1))/18. - Stefano Spezia, Oct 16 2023
a(n) is quasi-polynomial in n: a(3*n) = (n+1)*(3*n+2)/2 = A000326(n+1); a(3*n+1) = (n+1)*(3*n+4)/2 = A005449(n+1); a(3*n+2) = (3*n+4)*(3*n+5)/2 = A060544(n+2). - Peter Bala, Nov 20 2024

Extensions

More terms from Vincenzo Librandi, Mar 04 2014