cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A373711 Numbers that are simultaneously k-gonal and k-gonal pyramidal for some k >= 3.

Original entry on oeis.org

0, 1, 10, 120, 175, 441, 946, 1045, 1540, 4900, 5985, 7140, 23001, 23725, 48280, 195661, 245905, 314755, 801801, 975061, 1169686, 3578401, 10680265, 27453385, 55202400, 63016921, 101337426, 132361021, 197427385, 258815701, 432684460, 477132085, 837244045
Offset: 1

Views

Author

Kelvin Voskuijl, Jun 14 2024

Keywords

Comments

Matt Parker calls these numbers cannonball numbers, after the cannonball problem involving finding a number both square and square pyramidal.
If m==2 (mod 3), the m-gonal number A057145(m,(m^3-6*m^2+3*m+19)/9) = (m^2-4*m-2)*(m^2-4*m+1)*(m^3-6*m^2+3*m+19)/162 = A344410((m-2)/3) is a term. See comment in A027696. - Pontus von Brömssen, Dec 09 2024

Examples

			4900 is a term because it is both the 70th square and the 24th square pyramidal number.
		

Crossrefs

Formula

a(n) = A057145(A379973(n),A379974(n)) = A080851(A379973(n)-2,A379975(n)-1). - Pontus von Brömssen, Jan 09 2025

Extensions

a(13)-a(33) from Pontus von Brömssen, Dec 08 2024

A344410 a(n) = (3*n^2 - 1) * (3*n^2 - 2) * (3*n^3 - 3*n + 1)/2.

Original entry on oeis.org

1, 1, 1045, 23725, 195661, 975061, 3578401, 10680265, 27453385, 63016921, 132361021, 258815701, 477132085, 837244045, 1408778281, 2286380881, 3595928401, 5501691505, 8214519205, 12001111741, 17194450141, 24205450501, 33535911025, 45792819865, 61704091801
Offset: 0

Views

Author

Seiichi Manyama, May 17 2021

Keywords

Comments

a(n) is both (3*n+2)-gonal number and (3*n+2)-gonal pyramidal number.

Crossrefs

Programs

  • Mathematica
    Table[PolygonalNumber[3*n + 2, 3*n^3 - 3*n + 1], {n, 0, 24}] (* Amiram Eldar, May 17 2021 *)
    LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,1,1045,23725,195661,975061,3578401,10680265},30] (* Harvey P. Dale, Aug 10 2021 *)
  • PARI
    a(n) = (3*n^2-1)*(3*n^2-2)*(3*n^3-3*n+1)/2;
    
  • PARI
    p(k, n) = n*((k-2)*n-k+4)/2;
    a(n) = p(3*n+2, 3*n^3-3*n+1);
    
  • PARI
    my(N=40, x='x+O('x^N)); Vec((1-7*x+1065*x^2+15337*x^3+35135*x^4+15567*x^5+943*x^6-x^7)/(1-x)^8)

Formula

Let p(k,m) = A057145(k,m) denote m-th k-gonal number. Then
a(n) = p(3*n+2, 3*n^3-3*n+1);
a(n) = Sum_{j=1..3*n^2-2} p(3*n+2, j) for n > 0.
G.f.: (1-7*x+1065*x^2+15337*x^3+35135*x^4+15567*x^5+943*x^6-x^7)/(1-x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8). - Wesley Ivan Hurt, Sep 05 2022

A379973 Least k >= 3 such that A373711(n) is both k-gonal and k-gonal pyramidal.

Original entry on oeis.org

3, 3, 3, 3, 10, 14, 6, 8, 3, 4, 8, 3, 30, 11, 88, 14, 43, 50, 276, 17, 322, 20, 23, 26, 41, 29, 145, 32, 823, 35, 2378, 38, 41, 44, 47, 50, 53, 56, 59, 374, 62, 65, 2386, 68, 71, 74
Offset: 1

Views

Author

Pontus von Brömssen, Jan 08 2025

Keywords

Comments

For n <= 46, there is a unique k >= 3 such that A373711(n) is both k-gonal and k-gonal pyramidal. If this were true for all n, A027669 would be the sorted distinct terms of this sequence.

Crossrefs

Formula

A057145(a(n),A379974(n)) = A080851(a(n)-2,A379975(n)-1) = A373711(n).

A027696 Numbers k >= 2 such that for some m >= 2, the sum of the first m k-gonal numbers is again a k-gonal number, excluding the parametric solution m = (k^2-4*k-2)/3 when k==2 (mod 3).

Original entry on oeis.org

3, 4, 6, 8, 10, 11, 14, 17, 30, 41, 43, 50, 60, 88, 145, 276, 322, 374, 823, 1152
Offset: 1

Views

Author

Masanobu Kaneko (mkaneko(AT)math.kyushu-u.ac.jp)

Keywords

Comments

The parametric solution: if k==2 (mod 3) and k >= 5, the sum of the first (k^2-4*k-2)/3 k-gonal numbers is the ((k^3-6*k^2+3*k+19)/9)-th k-gonal number A057145(k,(k^3-6*k^2+3*k+19)/9) = A344410((k-2)/3).
2378, 2386, and 31265 are also terms. See link "Cannon Ball Numbers". - Pontus von Brömssen, Jan 08 2025
Number k is a term iff the elliptic curve (3*k-6)*y^2 - (3*k-12)*y = (k-2)*x^3 + 3*x^2 - (k-5)*x has an integral point with x >= 2 different from (k^2-4*k-2)/3. The listed values may be incomplete. For example, I was not able to verify that k = 273 is not a term. - Max Alekseyev, Feb 27 2025

Crossrefs

Extensions

More terms from Masanobu Kaneko (mkaneko(AT)math.kyushu-u.ac.jp), Jan 05 1998
Name clarified by Max Alekseyev, Feb 27 2025

A308488 a(n) is the smallest n-gonal pyramidal number greater than 1 which is also n-gonal; a(n) = 0 when one does not exist.

Original entry on oeis.org

10, 4900, 0, 946, 0, 1045, 0, 175, 23725, 0, 0, 441, 0, 0, 975061, 0, 0, 3578401, 0, 0, 10680265, 0, 0, 27453385, 0, 0, 63016921, 23001, 0, 132361021, 0, 0, 258815701, 0, 0, 477132085, 0, 0, 55202400, 0, 245905, 1408778281, 0, 0, 2286380881, 0, 0, 314755, 0, 0
Offset: 3

Views

Author

Davis Smith, Aug 22 2019

Keywords

Comments

a(n) is the smallest n-gonal number, N, such that, for some m > 1, N is the sum of the first m n-gonal numbers, 0 when one does not exist.
For n > 5, if n == 2 (mod 3), then a(n) > 0 and a(n) <= A080851(n - 2,((n-2)^2)/3 - 3), but there are cases where a(n) > 0 and n !== 2 (mod 3), e.g., a(10).

Crossrefs

Programs

  • PARI
    A308488_vec(lim,J=10^6)={my(
        pyramid(s,n)=(3*n^2 + n^3*(s-2)-n*(s-5))/6,
        check(s)=j=if(lift(Mod(s,3))==2,((s-2)^2)/3-2,J);m=3;while(m<=j,if(ispolygonal(pyramid(s,m),s),return(pyramid(s,m)),m++));0);
    vector(lim,s,check(s+2))}
Showing 1-5 of 5 results.