A027692 a(n) = n^2 + n + 7.
7, 9, 13, 19, 27, 37, 49, 63, 79, 97, 117, 139, 163, 189, 217, 247, 279, 313, 349, 387, 427, 469, 513, 559, 607, 657, 709, 763, 819, 877, 937, 999, 1063, 1129, 1197, 1267, 1339, 1413, 1489, 1567, 1647, 1729, 1813, 1899, 1987, 2077, 2169, 2263, 2359, 2457, 2557
Offset: 0
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..3000
- Keith Conrad, Galois groups of cubics and quartics (not in characteristic 2).
- Patrick De Geest, Palindromic Quasi_Over_Squares of the form n^2+(n+X).
- Koji Uchida, Class numbers of cubic cyclic fields, Journal of the Mathematical Society of Japan, Vol. 26, No. 3, 1974, pp. 447-453.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
GAP
List([0..50],n->n^2+n+7); # Muniru A Asiru, Jul 15 2018
-
Maple
A027692 := proc(n) n*(n+1)+7 ; end proc: # R. J. Mathar, Jun 06 2019
-
Mathematica
f[n_]:=n^2+n+7;f[Range[0,60]] (* Vladimir Joseph Stephan Orlovsky, Feb 06 2011 *)
-
PARI
a(n)=n^2+n+7 \\ Charles R Greathouse IV, Jun 11 2015
Formula
For n > 2: a(n) = A176271(n+1,4). - Reinhard Zumkeller, Apr 13 2010
a(n) = 2*n + a(n-1) (with a(0)=7). - Vincenzo Librandi, Aug 05 2010
G.f.: (-7 + 12*x - 7*x^2)/(x-1)^3. - R. J. Mathar, Feb 06 2011
a(n+1) = n^2 + 3*n + 9, see A005471. - R. J. Mathar, Jun 06 2019
a(n) mod 6 = A109007(n+2). - R. J. Mathar, Jun 06 2019
Sum_{n>=0} 1/a(n) = Pi*tanh(Pi*3*sqrt(3)/2)/(3*sqrt(3)). - Amiram Eldar, Jan 17 2021
From Elmo R. Oliveira, Oct 30 2024: (Start)
E.g.f.: exp(x)*(7 + 2*x + x^2).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Comments