cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A070253 Numbers k such that k^2 - 1 is a palindrome.

Original entry on oeis.org

1, 2, 3, 10, 18, 24, 65, 76, 100, 192, 205, 1000, 1748, 1908, 2366, 2967, 5732, 10000, 18992, 20565, 100000, 174602, 174748, 179318, 243064, 293787, 552102, 1000000, 1868288, 2967033, 9200157, 10000000, 22765896, 31552660, 93809717, 100000000
Offset: 1

Views

Author

Amarnath Murthy, May 06 2002

Keywords

Comments

Every palindrome of the form h^2-1 is of the form m*(m+2) (easy to prove by replacing h by m+1). In fact this is equal to A028503 + 1. - Patrick De Geest, May 09 2002

Crossrefs

Programs

  • Mathematica
    Do[ If[ a = IntegerDigits[n^2 - 1]; a == Reverse[a], Print[n]], {n, 1, 10^8/4}]
    Select[Range[10^8],PalindromeQ[#^2-1]&] (* Harvey P. Dale, Oct 13 2024 *)
  • PARI
    intreverse(n)=local(d,rev); rev=0; while(n>0,d=divrem(n,10); n=d[1]; rev=10*rev+d[2]); rev
    for(n=1,100000000,q=n*n-1; if(q==intreverse(q),print1(n,",")))

Formula

a(n) = A028503(n) + 1. - Giovanni Resta, Aug 29 2018

Extensions

Edited by Jason Earls, Klaus Brockhaus and Robert G. Wilson v, May 08 2002

A027719 Numbers k such that k^2 + 1 is a palindrome.

Original entry on oeis.org

0, 1, 2, 10, 25, 100, 1000, 1020, 1489, 2248, 10000, 10090, 100000, 100910, 102020, 167491, 1000000, 1000200, 1009090, 2744934, 10000000, 10000900, 10090910, 24917195, 100000000, 100909090, 103226660, 271867456, 1000000000, 1000002000, 1009090910, 1577033471
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    palQ[n_] := Block[{d = IntegerDigits[n]}, d == Reverse[d]]; Select[Range[0, 10^5], palQ[#^2 + 1] &] (* Giovanni Resta, Aug 29 2018 *)

Extensions

More terms from Giovanni Resta, Aug 28 2018

A070254 Perfect squares one more than a palindrome.

Original entry on oeis.org

1, 4, 9, 100, 324, 576, 4225, 5776, 10000, 36864, 42025, 1000000, 3055504, 3640464, 5597956, 8803089, 32855824, 100000000, 360696064, 422919225, 10000000000, 30485858404, 30536863504, 32154945124, 59080108096, 86310801369, 304816618404, 1000000000000, 3490500050944
Offset: 1

Views

Author

Amarnath Murthy, May 06 2002

Keywords

Comments

All even powers of 10 are members of both A070254 and A027720.

Crossrefs

Programs

  • Mathematica
    Do[ If[a = IntegerDigits[n^2 - 1]; a == Reverse[a], Print[n^2]], {n, 1, 10^6}]
    Select[Range[300000]^2,PalindromeQ[#-1]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 06 2018 *)

Formula

a(n) = A070253(n)^2 = A028504(n) + 1. - Giovanni Resta, Aug 29 2018

Extensions

Edited by Jason Earls and Robert G. Wilson v, May 08 2002
Offset changed by and more terms from Giovanni Resta, Aug 28 2018

A124664 Both k and its reverse are one more than a square.

Original entry on oeis.org

1, 2, 5, 10, 50, 101, 626, 730, 1090, 2210, 5477, 7745, 10001, 10610, 71290, 227530, 1000001, 1010026, 1014050, 1040401, 2217122, 2676497, 5053505, 5631130, 6200101, 6265010, 7946762, 100000001, 101808101, 248157010, 10000000001, 10180608202, 10182828101
Offset: 1

Views

Author

Tanya Khovanova, Dec 23 2006

Keywords

Comments

The first digit for each term is either 1, 2, 5, 6 or 7. - Chai Wah Wu, May 25 2017

Examples

			5477 is in the sequence because 5477 = 74^2 + 1 and 7745 = 88^2 + 1.
		

Crossrefs

A066618 is a subsequence of this sequence of numbers that do not end in 0. The sequence A027720 = Palindromes of form n^2 + 1 - is a palindromic subsequence of this sequence.
Cf. A287389: both k and its reverse are one less than a square.

Programs

  • Maple
    r:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||n):
    select(x-> issqr(r(x)-1), [n^2+1$n=0..150000])[]; # Alois P. Heinz, May 24 2017
  • Mathematica
    Select[Range[10000000], IntegerQ[Sqrt[ # - 1]] && IntegerQ[Sqrt[FromDigits[Reverse[IntegerDigits[ # ]]] - 1]] &]

Extensions

More terms from Alois P. Heinz, May 24 2017
Showing 1-4 of 4 results.