A027751 Irregular triangle read by rows in which row n lists the proper divisors of n (those divisors of n which are < n), with the first row {1} by convention.
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 1, 3, 1, 2, 5, 1, 1, 2, 3, 4, 6, 1, 1, 2, 7, 1, 3, 5, 1, 2, 4, 8, 1, 1, 2, 3, 6, 9, 1, 1, 2, 4, 5, 10, 1, 3, 7, 1, 2, 11, 1, 1, 2, 3, 4, 6, 8, 12, 1, 5, 1, 2, 13, 1, 3, 9, 1, 2, 4, 7, 14, 1, 1, 2, 3, 5, 6, 10, 15, 1, 1, 2, 4, 8, 16, 1, 3, 11, 1, 2, 17, 1, 5, 7, 1, 2, 3, 4, 6, 9, 12, 18
Offset: 1
Examples
The irregular triangle T(n,k) begins: n\k 1 2 3 4 5 ... 1: 1 (by convention) 2: 1 3: 1 4: 1 2 5: 1 6: 1 2 3 7: 1 8: 1 2 4 9: 1 3 10: 1 2 5 11: 1 12: 1 2 3 4 6 13: 1 14: 1 2 7 15: 1 3 5 16: 1 2 4 8 17: 1 18: 1 2 3 6 9 19: 1 20: 1 2 4 5 10 .... reformatted - _Wolfdieter Lang_, Jan 16 2016
Links
- Alois P. Heinz, Rows n = 1..1540, flattened
Crossrefs
Programs
-
Haskell
a027751 n k = a027751_tabf !! (n-1) !! (k-1) a027751_row n = a027751_tabf !! (n-1) a027751_tabf = [1] : map init (tail a027750_tabf) -- Reinhard Zumkeller, Apr 18 2012
-
Maple
with(numtheory): T:= n-> sort([(divisors(n) minus {n})[]])[]: T(1):=1: seq(T(n), n=1..50); # Alois P. Heinz, Apr 11 2012
-
Mathematica
Table[ Divisors[n] // Most, {n, 1, 36}] // Flatten // Prepend[#, 1] & (* Jean-François Alcover, Jun 10 2013 *)
-
PARI
row(n) = if (n==1, [1], my(d = divisors(n)); vector(#d-1,k, d[k])); \\ Michel Marcus, Apr 30 2017
-
Python
from sympy import divisors def a(n): return [1] if n==1 else divisors(n)[:-1] for n in range(21): print(a(n)) # Indranil Ghosh, Apr 30 2017
Extensions
More terms from Patrick De Geest, May 15 1998
Example edited by Omar E. Pol, Nov 23 2010
Comments