cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027751 Irregular triangle read by rows in which row n lists the proper divisors of n (those divisors of n which are < n), with the first row {1} by convention.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 1, 3, 1, 2, 5, 1, 1, 2, 3, 4, 6, 1, 1, 2, 7, 1, 3, 5, 1, 2, 4, 8, 1, 1, 2, 3, 6, 9, 1, 1, 2, 4, 5, 10, 1, 3, 7, 1, 2, 11, 1, 1, 2, 3, 4, 6, 8, 12, 1, 5, 1, 2, 13, 1, 3, 9, 1, 2, 4, 7, 14, 1, 1, 2, 3, 5, 6, 10, 15, 1, 1, 2, 4, 8, 16, 1, 3, 11, 1, 2, 17, 1, 5, 7, 1, 2, 3, 4, 6, 9, 12, 18
Offset: 1

Views

Author

Keywords

Comments

Or, take the list 1,2,3,4,... of natural numbers (A000027) and replace each number by its proper divisors.
The row length is 1 for n = 1 and A032741(n) for n >= 2. - Wolfdieter Lang, Jan 16 2016

Examples

			The irregular triangle T(n,k) begins:
n\k  1 2 3 4  5 ...
1:   1  (by convention)
2:   1
3:   1
4:   1 2
5:   1
6:   1 2 3
7:   1
8:   1 2 4
9:   1 3
10:  1 2 5
11:  1
12:  1 2 3 4  6
13:  1
14:  1 2 7
15:  1 3 5
16:  1 2 4 8
17:  1
18:  1 2 3 6  9
19:  1
20:  1 2 4 5 10
.... reformatted - _Wolfdieter Lang_, Jan 16 2016
		

Crossrefs

Cf. A027750, A032741 (row lengths), A001065, A000005.
Row sums give A173455. - Omar E. Pol, Nov 23 2010

Programs

  • Haskell
    a027751 n k = a027751_tabf !! (n-1) !! (k-1)
    a027751_row n = a027751_tabf !! (n-1)
    a027751_tabf = [1] : map init (tail a027750_tabf)
    -- Reinhard Zumkeller, Apr 18 2012
    
  • Maple
    with(numtheory):
    T:= n-> sort([(divisors(n) minus {n})[]])[]: T(1):=1:
    seq(T(n), n=1..50); # Alois P. Heinz, Apr 11 2012
  • Mathematica
    Table[ Divisors[n] // Most, {n, 1, 36}] // Flatten // Prepend[#, 1] & (* Jean-François Alcover, Jun 10 2013 *)
  • PARI
    row(n) = if (n==1, [1], my(d = divisors(n)); vector(#d-1,k, d[k])); \\ Michel Marcus, Apr 30 2017
  • Python
    from sympy import divisors
    def a(n): return [1] if n==1 else divisors(n)[:-1]
    for n in range(21): print(a(n)) # Indranil Ghosh, Apr 30 2017
    

Extensions

More terms from Patrick De Geest, May 15 1998
Example edited by Omar E. Pol, Nov 23 2010