cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 61 results. Next

A210442 Number of partitions of n into proper divisors of n, cf. A027751.

Original entry on oeis.org

1, 0, 1, 1, 3, 1, 7, 1, 9, 4, 10, 1, 44, 1, 13, 13, 35, 1, 80, 1, 91, 17, 19, 1, 457, 6, 22, 22, 155, 1, 741, 1, 201, 25, 28, 25, 2233, 1, 31, 29, 1369, 1, 1653, 1, 336, 285, 37, 1, 9675, 8, 406, 37, 453, 1, 3131, 37, 3064, 41, 46, 1, 73154, 1, 49, 492, 1827
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 21 2013

Keywords

Comments

For n > 0: a(A000040(n)) = 1 and a(A002808(n)) > 1.

Crossrefs

Programs

  • Haskell
    a210442 n = p (a027751_row n) n where
       p _          0 = 1
       p []         _ = 0
       p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
  • Maple
    with(numtheory):
    a:= proc(n) local b, l; l:= sort([(divisors(n) minus {n})[]]):
          b:= proc(m, i) option remember; `if`(m=0 or i=1, 1,
                `if`(i<1, 0, b(m, i-1)+`if`(l[i]>m, 0, b(m-l[i], i))))
              end; forget(b):
          b(n, nops(l))
        end:
    seq(a(n), n=0..100); # Alois P. Heinz, Jan 29 2013
  • Mathematica
    a[n_] := Module[{b, l}, l = Most[Divisors[n]]; b[m_, i_] := b[m, i] = If[m==0 || i==1, 1, If[i<1, 0, b[m, i-1] + If[l[[i]]>m, 0, b[m-l[[i]], i]]]]; b[n, Length[l]]]; a[0]=1; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 02 2017, after Alois P. Heinz *)

A173455 Row sums of triangle A027751.

Original entry on oeis.org

1, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 16, 1, 10, 9, 15, 1, 21, 1, 22, 11, 14, 1, 36, 6, 16, 13, 28, 1, 42, 1, 31, 15, 20, 13, 55, 1, 22, 17, 50, 1, 54, 1, 40, 33, 26, 1, 76, 8, 43, 21, 46, 1, 66, 17, 64, 23, 32, 1, 108, 1, 34, 41, 63, 19, 78, 1, 58, 27, 74, 1, 123, 1, 40, 49, 64, 19, 90, 1, 106
Offset: 1

Views

Author

Omar E. Pol, Nov 22 2010

Keywords

Comments

Essentially the same as A001065, but with a(1)=1.
Note that if n is a noncomposite number then a(n)=1.

Crossrefs

Programs

  • Mathematica
    Array[Boole[# == 1] + DivisorSigma[1, #] - # &, 80] (* Michael De Vlieger, Oct 30 2017 *)
  • PARI
    a(n) = if (n==1, 1, sigma(n) - n); \\ Michel Marcus, Oct 30 2017

A027750 Triangle read by rows in which row n lists the divisors of n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 2, 4, 1, 5, 1, 2, 3, 6, 1, 7, 1, 2, 4, 8, 1, 3, 9, 1, 2, 5, 10, 1, 11, 1, 2, 3, 4, 6, 12, 1, 13, 1, 2, 7, 14, 1, 3, 5, 15, 1, 2, 4, 8, 16, 1, 17, 1, 2, 3, 6, 9, 18, 1, 19, 1, 2, 4, 5, 10, 20, 1, 3, 7, 21, 1, 2, 11, 22, 1, 23, 1, 2, 3, 4, 6, 8, 12, 24, 1, 5, 25, 1, 2, 13, 26, 1, 3, 9, 27, 1, 2, 4, 7, 14, 28, 1, 29
Offset: 1

Views

Author

Keywords

Comments

Or, in the list of natural numbers (A000027), replace n with its divisors.
This gives the first elements of the ordered pairs (a,b) a >= 1, b >= 1 ordered by their product ab.
Also, row n lists the largest parts of the partitions of n whose parts are not distinct. - Omar E. Pol, Sep 17 2008
Concatenation of n-th row gives A037278(n). - Reinhard Zumkeller, Aug 07 2011
{A210208(n,k): k=1..A073093(n)} subset of {T(n,k): k=1..A000005(n)} for all n. - Reinhard Zumkeller, Mar 18 2012
Row sums give A000203. Right border gives A000027. - Omar E. Pol, Jul 29 2012
Indices of records are in A006218. - Irina Gerasimova, Feb 27 2013
The number of primes in the n-th row is omega(n) = A001221(n). - Michel Marcus, Oct 21 2015
The row polynomials P(n,x) = Sum_{k=1..A000005(n)} T(n,k)*x^k with composite n which are irreducible over the integers are given in A292226. - Wolfdieter Lang, Nov 09 2017
T(n,k) is also the number of parts in the k-th partition of n into equal parts (see example). - Omar E. Pol, Nov 20 2019
Let there be an infinite number of tiles, each labeled with a positive integer m, initially placed on square m of an infinite 1D board. At step n, the leftmost unblocked tile (i.e., the top tile of the leftmost nonempty stack) moves forward exactly m squares, where m is its label. Tiles that land on the same square form a stack, and only the top tile of any stack may move. This sequence records the label m of the tile that moves at step n. - Ali Sada, May 23 2025
All divisors of a positive integer n form a finite set. Extending divisibility to n = 0 by using the definition (k|n <=> exists m such that m*k = n) makes the set of divisors infinite, suggesting the definition was not intended for zero, as arithmetic functions typically apply to n >= 1. So to preserve a core property when generalizing (cardinality), one can define divisors of n >= 0 as the fixed points of the greatest common divisor on the set [n] = {0, 1, 2, ..., n}. By this definition, the divisors of 0 are {0}, since 0|0 and gcd(0, 0) = 0. This definition is not circular because the gcd can be effectively calculated using the Euclidean algorithm. (Cf. links.) - Peter Luschny, Jun 02 2025

Examples

			Triangle begins:
  1;
  1, 2;
  1, 3;
  1, 2, 4;
  1, 5;
  1, 2, 3, 6;
  1, 7;
  1, 2, 4, 8;
  1, 3, 9;
  1, 2, 5, 10;
  1, 11;
  1, 2, 3, 4, 6, 12;
  ...
For n = 6 the partitions of 6 into equal parts are [6], [3,3], [2,2,2], [1,1,1,1,1,1], so the number of parts are [1, 2, 3, 6] respectively, the same as the divisors of 6. - _Omar E. Pol_, Nov 20 2019
		

Crossrefs

Cf. A000005 (row length), A001221, A027749, A027751, A056534, A056538, A127093, A135010, A161700, A163280, A240698 (partial sums of rows), A240694 (partial products of rows), A247795 (parities), A292226, A244051.

Programs

  • Haskell
    a027750 n k = a027750_row n !! (k-1)
    a027750_row n = filter ((== 0) . (mod n)) [1..n]
    a027750_tabf = map a027750_row [1..]
    -- Reinhard Zumkeller, Jan 15 2011, Oct 21 2010
    
  • Magma
    [Divisors(n) : n in [1..20]];
    
  • Maple
    seq(op(numtheory:-divisors(a)), a = 1 .. 20) # Matt C. Anderson, May 15 2017
  • Mathematica
    Flatten[ Table[ Flatten [ Divisors[ n ] ], {n, 1, 30} ] ]
  • PARI
    v=List();for(n=1,20,fordiv(n,d,listput(v,d)));Vec(v) \\ Charles R Greathouse IV, Apr 28 2011
    
  • Python
    from sympy import divisors
    for n in range(1, 16):
        print(divisors(n)) # Indranil Ghosh, Mar 30 2017

Formula

a(A006218(n-1) + k) = k-divisor of n, 1 <= k <= A000005(n). - Reinhard Zumkeller, May 10 2006
T(n,k) = n / A056538(n,k) = A056538(n,n-k+1), 1 <= k <= A000005(n). - Reinhard Zumkeller, Sep 28 2014

Extensions

More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu)

A001065 Sum of proper divisors (or aliquot parts) of n: sum of divisors of n that are less than n.

Original entry on oeis.org

0, 1, 1, 3, 1, 6, 1, 7, 4, 8, 1, 16, 1, 10, 9, 15, 1, 21, 1, 22, 11, 14, 1, 36, 6, 16, 13, 28, 1, 42, 1, 31, 15, 20, 13, 55, 1, 22, 17, 50, 1, 54, 1, 40, 33, 26, 1, 76, 8, 43, 21, 46, 1, 66, 17, 64, 23, 32, 1, 108, 1, 34, 41, 63, 19, 78, 1, 58, 27, 74, 1, 123, 1, 40, 49, 64, 19, 90, 1, 106
Offset: 1

Views

Author

Keywords

Comments

Also total number of parts in all partitions of n into equal parts that do not contain 1 as a part. - Omar E. Pol, Jan 16 2013
Related concepts: If a(n) < n, n is said to be deficient, if a(n) > n, n is abundant, and if a(n) = n, n is perfect. If there is a cycle of length 2, so that a(n) = b and a(b) = n, b and n are said to be amicable. If there is a longer cycle, the numbers in the cycle are said to be sociable. See examples. - Juhani Heino, Jul 17 2017
Sum of the smallest parts in the partitions of n into two parts such that the smallest part divides the largest. - Wesley Ivan Hurt, Dec 22 2017
a(n) is also the total number of parts congruent to 0 mod k in the partitions of k*n into equal parts that do not contain k as a part (the comment dated Jan 16 2013 is the case for k = 1). - Omar E. Pol, Nov 23 2019
Fixed points are in A000396. - Alois P. Heinz, Mar 10 2024

Examples

			x^2 + x^3 + 3*x^4 + x^5 + 6*x^6 + x^7 + 7*x^8 + 4*x^9 + 8*x^10 + x^11 + ...
For n = 44, sum of divisors of n = sigma(n) = 84; so a(44) = 84-44 = 40.
Related concepts: (Start)
From 1 to 17, all n are deficient, except 6 and 12 seen below. See A005100.
Abundant numbers: a(12) = 16, a(18) = 21. See A005101.
Perfect numbers: a(6) = 6, a(28) = 28. See A000396.
Amicable numbers: a(220) = 284, a(284) = 220. See A259180.
Sociable numbers: 12496 -> 14288 -> 15472 -> 14536 -> 14264 -> 12496. See A122726. (End)
For n = 10 the sum of the divisors of 10 that are less than 10 is 1 + 2 + 5 = 8. On the other hand, the partitions of 10 into equal parts that do not contain 1 as a part are [10], [5,5], [2,2,2,2,2], there are 8 parts, so a(10) = 8. - _Omar E. Pol_, Nov 24 2019
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
  • George E. Andrews, Number Theory. New York: Dover, 1994; Pages 1, 75-92; p. 92 #15: Sigma(n) / d(n) >= n^(1/2).
  • Carl Pomerance, The first function and its iterates, pp. 125-138 in Connections in Discrete Mathematics, ed. S. Butler et al., Cambridge, 2018.
  • H. J. J. te Riele, Perfect numbers and aliquot sequences, pp. 77-94 in J. van de Lune, ed., Studieweek "Getaltheorie en Computers", published by Math. Centrum, Amsterdam, Sept. 1980.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 91.

Crossrefs

Least inverse: A070015, A359132.
Values taken: A078923, values not taken: A005114.
Records: A034090, A034091.
First differences: A053246, partial sums: A153485.
a(n) = n - A033879(n) = n + A033880(n). - Omar E. Pol, Dec 30 2013
Row sums of A141846 and of A176891. - Gary W. Adamson, May 02 2010
Row sums of A176079. - Mats Granvik, May 20 2012
Alternating row sums of A231347. - Omar E. Pol, Jan 02 2014
a(n) = sum (A027751(n,k): k = 1..A000005(n)-1). - Reinhard Zumkeller, Apr 05 2013
For n > 1: a(n) = A240698(n,A000005(n)-1). - Reinhard Zumkeller, Apr 10 2014
A134675(n) = A007434(n) + a(n). - Conjectured by John Mason and proved by Max Alekseyev, Jan 07 2015
Cf. A037020 (primes), A053868, A053869 (odd and even terms).
Cf. A048138 (number of occurrences), A238895, A238896 (record values thereof).
Cf. A007956 (products of proper divisors).
Cf. A005100, A005101, A000396, A259180, A122726 (related concepts).

Programs

  • Haskell
    a001065 n = a000203 n - n  -- Reinhard Zumkeller, Sep 15 2011
    
  • Magma
    [SumOfDivisors(n)-n: n in [1..100]]; // Vincenzo Librandi, May 06 2015
    
  • Maple
    A001065 := proc(n)
        numtheory[sigma](n)-n ;
    end proc:
    seq( A001065(n),n=1..100) ;
  • Mathematica
    Table[ Plus @@ Select[ Divisors[ n ], #Zak Seidov, Sep 10 2009 *)
    Table[DivisorSigma[1, n] - n, {n, 1, 80}] (* Jean-François Alcover, Apr 25 2013 *)
    Array[Plus @@ Most@ Divisors@# &, 80] (* Robert G. Wilson v, Dec 24 2017 *)
  • MuPAD
    numlib::sigma(n)-n$ n=1..81 // Zerinvary Lajos, May 13 2008
    
  • PARI
    {a(n) = if( n==0, 0, sigma(n) - n)} /* Michael Somos, Sep 20 2011 */
    
  • Python
    from sympy import divisor_sigma
    def A001065(n): return divisor_sigma(n)-n # Chai Wah Wu, Nov 04 2022
    
  • Sage
    [sigma(n, 1)-n for n in range(1, 81)] # Stefano Spezia, Jul 14 2025

Formula

G.f.: Sum_{k>0} k * x^(2*k)/(1 - x^k). - Michael Somos, Jul 05 2006
a(n) = sigma(n) - n = A000203(n) - n. - Lekraj Beedassy, Jun 02 2005
a(n) = A155085(-n). - Michael Somos, Sep 20 2011
Equals inverse Mobius transform of A051953 = A051731 * A051953. Example: a(6) = 6 = (1, 1, 1, 0, 0, 1) dot (0, 1, 1, 2, 1, 4) = (0 + 1 + 1 + 0 + 0 + 4), where A051953 = (0, 1, 1, 2, 1, 4, 1, 4, 3, 6, 1, 8, ...) and (1, 1, 1, 0, 0, 1) = row 6 of A051731 where the 1's positions indicate the factors of 6. - Gary W. Adamson, Jul 11 2008
a(n) = A006128(n) - A220477(n) - n. - Omar E. Pol Jan 17 2013
a(n) = Sum_{i=1..floor(n/2)} i*(1-ceiling(frac(n/i))). - Wesley Ivan Hurt, Oct 25 2013
Dirichlet g.f.: zeta(s-1)*(zeta(s) - 1). - Ilya Gutkovskiy, Aug 07 2016
a(n) = 1 + A048050(n), n > 1. - R. J. Mathar, Mar 13 2018
Erdős (Elem. Math. 28 (1973), 83-86) shows that the density of even integers in the range of a(n) is strictly less than 1/2. The argument of Coppersmith (1987) shows that the range of a(n) has density at most 47/48 < 1. - N. J. A. Sloane, Dec 21 2019
G.f.: Sum_{k >= 2} x^k/(1 - x^k)^2. Cf. A296955. (This follows from the fact that if g(z) = Sum_{n >= 1} a(n)*z^n and f(z) = Sum_{n >= 1} a(n)*z^(N*n)/(1 - z^n) then f(z) = Sum_{k >= N} g(z^k), taking a(n) = n and N = 2.) - Peter Bala, Jan 13 2021
Faster converging g.f.: Sum_{n >= 1} q^(n*(n+1))*(n*q^(3*n+2) - (n + 1)*q^(2*n+1) - (n - 1)*q^(n+1) + n)/((1 - q^n)*(1 - q^(n+1))^2). (In equation 1 in Arndt, after combining the two n = 0 summands to get -t/(1 - t), apply the operator t*d/dt to the resulting equation and then set t = q and x = 1.) - Peter Bala, Jan 22 2021
a(n) = Sum_{d|n} d * (1 - [n = d]), where [ ] is the Iverson bracket. - Wesley Ivan Hurt, Jan 28 2021
a(n) = Sum_{i=1..n} ((n-1) mod i) - (n mod i). [See also A176079.] - José de Jesús Camacho Medina, Feb 23 2021

A074206 Kalmár's [Kalmar's] problem: number of ordered factorizations of n.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 3, 1, 4, 2, 3, 1, 8, 1, 3, 3, 8, 1, 8, 1, 8, 3, 3, 1, 20, 2, 3, 4, 8, 1, 13, 1, 16, 3, 3, 3, 26, 1, 3, 3, 20, 1, 13, 1, 8, 8, 3, 1, 48, 2, 8, 3, 8, 1, 20, 3, 20, 3, 3, 1, 44, 1, 3, 8, 32, 3, 13, 1, 8, 3, 13, 1, 76, 1, 3, 8, 8, 3, 13, 1, 48, 8, 3, 1, 44, 3, 3, 3, 20, 1, 44, 3, 8, 3, 3, 3, 112
Offset: 0

Views

Author

N. J. A. Sloane, Apr 29 2003

Keywords

Comments

a(0)=0, a(1)=1; thereafter a(n) is the number of ordered factorizations of n as a product of integers greater than 1.
Kalmár (1931) seems to be the earliest reference that mentions this sequence (as opposed to A002033). - N. J. A. Sloane, May 05 2016
a(n) is the permanent of the n-1 X n-1 matrix A with (i,j) entry = 1 if j|i+1 and = 0 otherwise. This is because ordered factorizations correspond to nonzero elementary products in the permanent. For example, with n=6, 3*2 -> 1,3,6 [partial products] -> 6,3,1 [reverse list] -> (6,3)(3,1) [partition into pairs with offset 1] -> (5,3)(2,1) [decrement first entry] -> (5,3)(2,1)(1,2)(3,4)(4,5) [append pairs (i,i+1) to get a permutation] -> elementary product A(1,2)A(2,1)A(3,4)A(4,5)A(5,3). - David Callan, Oct 19 2005
This sequence is important in describing the amount of energy in all wave structures in the Universe according to harmonics theory. - Ray Tomes (ray(AT)tomes.biz), Jul 22 2007
a(n) appears to be the number of permutation matrices contributing to the Moebius function. See A008683 for more information. Also a(n) appears to be the Moebius transform of A067824. Furthermore it appears that except for the first term a(n)=A067824(n)*(1/2). Are there other sequences such that when the Moebius transform is applied, the new sequence is also a constant factor times the starting sequence? - Mats Granvik, Jan 01 2009
Numbers divisible by n distinct primes appear to have ordered factorization values that can be found in an n-dimensional summatory Pascal triangle. For example, the ordered factorization values for numbers divisible by two distinct primes can be found in table A059576. - Mats Granvik, Sep 06 2009
Inverse Mobius transform of A174725 and also except for the first term, inverse Mobius transform of A174726. - Mats Granvik, Mar 28 2010
a(n) is a lower bound on the worst-case number of solutions to the probed partial digest problem for n fragments of DNA; see the Newberg & Naor reference, below. - Lee A. Newberg, Aug 02 2011
All integers greater than 1 are perfect numbers over this sequence (for definition of A-perfect numbers, see comment to A175522). - Vladimir Shevelev, Aug 03 2011
If n is squarefree, then a(n) = A000670(A001221(n)) = A000670(A001222(n)). - Vladimir Shevelev and Franklin T. Adams-Watters, Aug 05 2011
A034776 lists the values taken by this sequence. - Robert G. Wilson v, Jun 02 2012
From Gus Wiseman, Aug 25 2020: (Start)
Also the number of strict chains of divisors from n to 1. For example, the a(n) chains for n = 1, 2, 4, 6, 8, 12, 30 are:
1 2/1 4/1 6/1 8/1 12/1 30/1
4/2/1 6/2/1 8/2/1 12/2/1 30/2/1
6/3/1 8/4/1 12/3/1 30/3/1
8/4/2/1 12/4/1 30/5/1
12/6/1 30/6/1
12/4/2/1 30/10/1
12/6/2/1 30/15/1
12/6/3/1 30/6/2/1
30/6/3/1
30/10/2/1
30/10/5/1
30/15/3/1
30/15/5/1
(End)
a(n) is also the number of ways to tile a strip of length log(n) with tiles having lengths {log(k) : k>=2}. - David Bevan, Jan 07 2025

Examples

			G.f. = x + x^2 + x^3 + 2*x^4 + x^5 + 3*x^6 + x^7 + 4*x^8 + 2*x^9 + 3*x^10 + ...
Number of ordered factorizations of 8 is 4: 8 = 2*4 = 4*2 = 2*2*2.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 126, see #27.
  • R. Honsberger, Mathematical Gems III, M.A.A., 1985, p. 141.
  • Kalmár, Laszlo, A "factorisatio numerorum" problemajarol [Hungarian], Matemat. Fizik. Lapok, 38 (1931), 1-15.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 124.

Crossrefs

Apart from initial term, same as A002033.
a(A002110) = A000670, row sums of A251683.
A173382 (and A025523) gives partial sums.
A124433 has these as unsigned row sums.
A334996 has these as row sums.
A001055 counts factorizations.
A001222 counts prime factors with multiplicity.
A008480 counts ordered prime factorizations.
A067824 counts strict chains of divisors starting with n.
A122651 counts strict chains of divisors summing to n.
A253249 counts strict chains of divisors.

Programs

  • Haskell
    a074206 n | n <= 1 = n
    | otherwise = 1 + (sum $ map (a074206 . (div n)) $
    tail $ a027751_row n)
    -- Reinhard Zumkeller, Oct 01 2012
    
  • Maple
    a := array(1..150): for k from 1 to 150 do a[k] := 0 od: a[1] := 1: for j from 2 to 150 do for m from 1 to j-1 do if j mod m = 0 then a[j] := a[j]+a[m] fi: od: od: for k from 1 to 150 do printf(`%d,`,a[k]) od: # James Sellers, Dec 07 2000
    A074206:= proc(n) option remember; if n > 1 then `+`(op(apply(A074206, numtheory[divisors](n)[1..-2]))) else n fi end: # M. F. Hasler, Oct 12 2018
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = a /@ Most[Divisors[n]] // Total; a /@ Range[20000] (* N. J. A. Sloane, May 04 2016, based on program in A002033 *)
    ccc[n_]:=Switch[n,0,{},1,{{1}},,Join@@Table[Prepend[#,n]&/@ccc[d],{d,Most[Divisors[n]]}]]; Table[Length[ccc[n]],{n,0,100}] (* _Gus Wiseman, Aug 25 2020 *)
  • PARI
    A=vector(100);A[1]=1; for(n=2,#A,A[n]=1+sumdiv(n,d,A[d])); A/=2; A[1]=1; concat(0,A) \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    {a(n) = if( n<2, n>0, my(A = divisors(n)); sum(k=1, #A-1, a(A[k])))}; /* Michael Somos, Dec 26 2016 */
    
  • PARI
    A074206(n)=if(n>1, sumdiv(n, i, if(iA074206(i))),n) \\ M. F. Hasler, Oct 12 2018
    
  • PARI
    A74206=[1]; A074206(n)={if(#A74206A074206(i)))} \\ Use memoization for computing many values. - M. F. Hasler, Oct 12 2018
    
  • PARI
    first(n) = {my(res = vector(n, i, 1)); for(i = 2, n, for(j = 2, n \ i, res[i*j] += res[i])); concat(0, res)} \\ David A. Corneth, Oct 13 2018
    
  • PARI
    first(n) = {my(res = vector(n, i, 1)); for(i = 2, n, d = divisors(i); res[i] += sum(j = 1, #d-1, res[d[j]])); concat(0, res)} \\ somewhat faster than progs above for finding first terms of n. \\ David A. Corneth, Oct 12 2018
    
  • PARI
    a(n)={if(!n, 0, my(sig=factor(n)[,2], m=vecsum(sig)); sum(k=0, m, prod(i=1, #sig, binomial(sig[i]+k-1, k-1))*sum(r=k, m, binomial(r,k)*(-1)^(r-k))))} \\ Andrew Howroyd, Aug 30 2020
    
  • Python
    from math import prod
    from functools import lru_cache
    from sympy import divisors, factorint, prime
    @lru_cache(maxsize=None)
    def A074206(n): return sum(A074206(d) for d in divisors(prod(prime(i+1)**e for i,e in enumerate(sorted(factorint(n).values(),reverse=True))),generator=True,proper=True)) if n > 1 else n # Chai Wah Wu, Sep 16 2022
  • SageMath
    @cached_function
    def minus_mu(n):
        if n < 2: return n
        return sum(minus_mu(d) for d in divisors(n)[:-1])
    # Note that changing the sign of the sum gives the Möbius function A008683.
    print([minus_mu(n) for n in (0..96)]) # Peter Luschny, Dec 26 2016
    

Formula

With different offset: a(n) = sum of all a(i) such that i divides n and i < n. - Clark Kimberling
a(p^k) = 2^(k-1) if k>0 and p is a prime.
Dirichlet g.f.: 1/(2-zeta(s)). - Herbert S. Wilf, Apr 29 2003
a(n) = A067824(n)/2 for n>1; a(A122408(n)) = A122408(n)/2. - Reinhard Zumkeller, Sep 03 2006
If p,q,r,... are distinct primes, then a(p*q)=3, a(p^2*q)=8, a(p*q*r)=13, a(p^3*q)=20, etc. - Vladimir Shevelev, Aug 03 2011 [corrected by Charles R Greathouse IV, Jun 02 2012]
a(0) = 0, a(1) = 1; a(n) = [x^n] Sum_{k=1..n-1} a(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Dec 11 2017
a(n) = a(A046523(n)); a(A025487(n)) = A050324(n): a(n) depends only on the nonzero exponents in the prime factorization of n, more precisely prime signature of n, cf. A124010 and A320390. - M. F. Hasler, Oct 12 2018
a(n) = A000670(A001221(n)) for squarefree n. In particular a(A002110(n)) = A000670(n). - Amiram Eldar, May 13 2019
a(n) = A050369(n)/n, for n>=1. - Ridouane Oudra, Aug 31 2019
a(n) = A361665(A181819(n)). - Pontus von Brömssen, Mar 25 2023
From Ridouane Oudra, Nov 02 2023: (Start)
If p,q are distinct primes, and n,m>0 then we have:
a(p^n*q^m) = Sum_{k=0..min(n,m)} 2^(n+m-k-1)*binomial(n,k)*binomial(m,k);
More generally: let tau[k](n) denote the number of ordered factorizations of n as a product of k terms, also named the k-th Piltz function (see A007425), then we have for n>1:
a(n) = Sum_{j=1..bigomega(n)} Sum_{k=1..j} (-1)^(j-k)*binomial(j,k)*tau[k](n), or
a(n) = Sum_{j=1..bigomega(n)} Sum_{k=0..j-1} (-1)^k*binomial(j,k)*tau[j-k](n). (End)

Extensions

Originally this sequence was merged with A002033, the number of perfect partitions. Herbert S. Wilf suggested that it warrants an entry of its own.

A032741 a(0) = 0; for n > 0, a(n) = number of proper divisors of n (divisors of n which are less than n).

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 1, 5, 1, 3, 3, 4, 1, 5, 1, 5, 3, 3, 1, 7, 2, 3, 3, 5, 1, 7, 1, 5, 3, 3, 3, 8, 1, 3, 3, 7, 1, 7, 1, 5, 5, 3, 1, 9, 2, 5, 3, 5, 1, 7, 3, 7, 3, 3, 1, 11, 1, 3, 5, 6, 3, 7, 1, 5, 3, 7, 1, 11, 1, 3, 5, 5, 3, 7, 1, 9, 4, 3, 1, 11, 3, 3, 3, 7, 1, 11, 3, 5, 3, 3, 3, 11, 1, 5, 5
Offset: 0

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

Number of d < n which divide n.
Call an integer k between 1 and n a "semi-divisor" of n if n leaves a remainder of 1 when divided by k, i.e., n == 1 (mod k). a(n) gives the number of semi-divisors of n+1. - Joseph L. Pe, Sep 11 2002
a(n+1) is also the number of k, 0 <= k <= n-1, such that C(n,k) divides C(n,k+1). - Benoit Cloitre, Oct 17 2002
a(n+1) is also the number of factors of the n-th degree polynomial x^n + x^(n-1) + x^(n-2) + ... + x^2 + x + 1. Example: 1 + x + x^2 + x^3 = (1+x)(1+x^2) implies a(4)=2.
a(n) is also the number of factors of the n-th Fibonacci polynomial. - T. D. Noe, Mar 09 2006
Number of partitions of n into 2 parts with the second dividing the first. - Franklin T. Adams-Watters, Sep 20 2006
Number of partitions of n+1 into exactly one q and at least one q+1. Example: a(12)=5; indeed, we have 13 = 7 + 6 = 5 + 4 + 4 = 4 + 3 + 3 + 3 = 3 + 2 + 2 + 2 + 2 + 2 = 2 + 11*1.
Differences of A002541. - George Beck, Feb 12 2012
For n > 1: number of ones in row n+1 of triangle A051778. - Reinhard Zumkeller, Dec 03 2014
For n > 0, a(n) is the number of strong divisors of n. - Omar E. Pol, May 03 2015
a(n) is also the number of factors of the (n-1)-th degree polynomial ((x+1)^n-1)/x. Example: for n=6, ((x+1)^6-1)/x = x^5 + 6*x^4 + 15*x^3 + 20*x^2 + 15*x + 6 = (2+x)(1+x+x^2)(3+3x+x^2) implies a(6)=3. - Federico Provvedi, Oct 09 2018
Consider the polynomial P(n,z) = Sum_{i=1..q} d(i)*z^(i-1) where d(1), d(2), ..., d(q) are are the q ordered divisors of n. The sequence lists the numbers of zeros of P(n,z) strictly inside the unit circle. - Michel Lagneau, Apr 06 2025

Examples

			a(6) = 3 since the proper divisors of 6 are 1, 2, 3.
		

References

  • André Weil, Number Theory, An approach through history, From Hammurapi to Legendre, Birkhäuser, 1984, page 5.

Crossrefs

Column 2 of A122934.
Cf. A003238, A001065, A027749, A027751 (list of proper divisors).

Programs

  • GAP
    Concatenation([0],List([1..100],n->Tau(n)-1)); # Muniru A Asiru, Oct 09 2018
    
  • Haskell
    a032741 n = if n == 0 then 0 else a000005 n - 1
    -- Reinhard Zumkeller, Jul 31 2014
    
  • Maple
    A032741 := proc(n)
        if n = 0 then
            0 ;
        else
            numtheory[tau](n)-1 ;
        end if;
    end proc: # R. J. Mathar, Feb 03 2013
  • Mathematica
    Prepend[DivisorSigma[0, Range[99]]-1, 0] (* Jayanta Basu, May 25 2013 *)
  • PARI
    a(n) = if(n<1,0,numdiv(n)-1)
    
  • PARI
    {a(n)=polcoeff(2*sum(m=1,n\2+1,sumdiv(m,d,log(1-x^(m/d) +x*O(x^n) )^(2*d)/(2*d)!)), n)} \\ Paul D. Hanna, Aug 21 2014
    
  • Python
    from sympy import divisor_count
    def A032741(n): return divisor_count(n)-1 if n else 0 # Chai Wah Wu, Mar 14 2023

Formula

a(n) = tau(n)-1 = A000005(n)-1. Cf. A039653.
G.f.: Sum_{n>=1} x^(2*n)/(1-x^n). - Michael Somos, Apr 29 2003
G.f.: Sum_{i>=1} (1-x^i+x^(2*i))/(1-x^i). - Jon Perry, Jul 03 2004
a(n) = Sum_{k=1..floor(n/2)} A051731(n-k,k). - Reinhard Zumkeller, Nov 01 2009
G.f.: 2*Sum_{n>=1} Sum_{d|n} log(1 - x^(n/d))^(2*d) / (2*d)!. - Paul D. Hanna, Aug 21 2014
Dirichlet g.f.: zeta(s)*(zeta(s)-1). - Geoffrey Critzer, Dec 06 2014
a(n) = Sum_{k=1..n-1} binomial((n-1) mod k, k-1). - Wesley Ivan Hurt, Sep 26 2016
a(n) = Sum_{i=1..n-1} floor(n/i)-floor((n-1)/i). - Wesley Ivan Hurt, Nov 15 2017
a(n) = Sum_{i=1..n-1} 1-sign(i mod (n-i)). - Wesley Ivan Hurt, Sep 27 2018
Sum_{k=1..n} a(k) ~ n*log(n) + 2*(gamma - 1)*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 27 2022

Extensions

Typos in definition corrected by Omar E. Pol, Dec 13 2008

A048050 Chowla's function: sum of divisors of n except for 1 and n.

Original entry on oeis.org

0, 0, 0, 2, 0, 5, 0, 6, 3, 7, 0, 15, 0, 9, 8, 14, 0, 20, 0, 21, 10, 13, 0, 35, 5, 15, 12, 27, 0, 41, 0, 30, 14, 19, 12, 54, 0, 21, 16, 49, 0, 53, 0, 39, 32, 25, 0, 75, 7, 42, 20, 45, 0, 65, 16, 63, 22, 31, 0, 107, 0, 33, 40, 62, 18, 77, 0, 57, 26, 73, 0, 122, 0, 39, 48, 63, 18, 89
Offset: 1

Views

Author

Keywords

Comments

a(n) = 0 if and only if n is a noncomposite number (cf. A008578). - Omar E. Pol, Jul 31 2012
If n is semiprime, a(n) = A008472(n). - Wesley Ivan Hurt, Aug 22 2013
If n = p*q where p and q are distinct primes then a(n) = p+q.
If k,m > 1 are coprime, then a(k*m) = a(k)*a(m) + (m+1)*a(k) + (k+1)*a(m) + k + m. - Robert Israel, Apr 28 2015
a(n) is also the total number of parts in the partitions of n into equal parts that contain neither 1 nor n as a part (see example). More generally, a(n) is the total number of parts congruent to 0 mod k in the partitions of k*n into equal parts that contain neither k nor k*n as a part. - Omar E. Pol, Nov 24 2019
Named after the Indian-American mathematician Sarvadaman D. S. Chowla (1907-1995). - Amiram Eldar, Mar 09 2024

Examples

			For n = 20 the divisors of 20 are 1,2,4,5,10,20, so a(20) = 2+4+5+10 = 21.
On the other hand, the partitions of 20 into equal parts that contain neither 1 nor 20 as a part are [10,10], [5,5,5,5], [4,4,4,4,4], [2,2,2,2,2,2,2,2,2,2]. There are 21 parts, so a(20) = 21. - _Omar E. Pol_, Nov 24 2019
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 92.

Crossrefs

Programs

  • Haskell
    a048050 1 = 0
    a048050 n = (subtract 1) $ sum $ a027751_row n
    -- Reinhard Zumkeller, Feb 09 2013
    
  • Magma
    A048050:=func< n | n eq 1 or IsPrime(n) select 0 else &+[ a: a in Divisors(n) | a ne 1 and a ne n ] >; [ A048050(n): n in [1..100] ]; // Klaus Brockhaus, Mar 04 2011
    
  • Maple
    A048050 := proc(n) if n > 1 then numtheory[sigma](n)-1-n ; else 0; end if; end proc:
  • Mathematica
    f[n_]:=Plus@@Divisors[n]-n-1; Table[f[n],{n,100}] (*Vladimir Joseph Stephan Orlovsky, Sep 13 2009*)
    Join[{0},DivisorSigma[1,#]-#-1&/@Range[2,80]] (* Harvey P. Dale, Feb 25 2015 *)
  • PARI
    a(n)=if(n>1,sigma(n)-n-1,0) \\ Charles R Greathouse IV, Nov 20 2012
    
  • Python
    from sympy import divisors
    def a(n): return sum(divisors(n)[1:-1]) # Indranil Ghosh, Apr 26 2017
    
  • Python
    from sympy import divisor_sigma
    def A048050(n): return 0 if n == 1 else divisor_sigma(n)-n-1 # Chai Wah Wu, Apr 18 2021

Formula

a(n) = A000203(n) - A065475(n).
a(n) = A001065(n) - 1, n > 1.
For n > 1: a(n) = Sum_{k=2..A000005(n)-1} A027750(n,k). - Reinhard Zumkeller, Feb 09 2013
a(n) = A000203(n) - n - 1, n > 1. - Wesley Ivan Hurt, Aug 22 2013
G.f.: Sum_{k>=2} k*x^(2*k)/(1 - x^k). - Ilya Gutkovskiy, Jan 22 2017

A091191 Primitive abundant numbers: abundant numbers (A005101) having no abundant proper divisor.

Original entry on oeis.org

12, 18, 20, 30, 42, 56, 66, 70, 78, 88, 102, 104, 114, 138, 174, 186, 196, 222, 246, 258, 272, 282, 304, 308, 318, 354, 364, 366, 368, 402, 426, 438, 464, 474, 476, 498, 532, 534, 550, 572, 582, 606, 618, 642, 644, 650, 654, 678, 748, 762, 786, 812, 822
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 27 2003

Keywords

Comments

A080224(a(n)) = 1.
This is a supersequence of the primitive abundant number sequence A071395, since many of these numbers will be positive integer multiples of the perfect numbers (A000396). - Timothy L. Tiffin, Jul 15 2016
If the terms of A071395 are removed from this sequence, then the resulting sequence will be A275082. - Timothy L. Tiffin, Jul 16 2016

Examples

			12 is a term since 1, 2, 3, 4, and 6 (the proper divisors of 12) are either deficient or perfect numbers, and thus not abundant. - _Timothy L. Tiffin_, Jul 15 2016
		

Crossrefs

Cf. A006038 (odd terms), A005101 (abundant numbers), A091192.
Cf. A027751, A071395 (subsequence), supersequence of A275082.
Cf. A294930 (characteristic function), A294890.

Programs

  • Haskell
    a091191 n = a091191_list !! (n-1)
    a091191_list = filter f [1..] where
       f x = sum pdivs > x && all (<= 0) (map (\d -> a000203 d - 2 * d) pdivs)
             where pdivs = a027751_row x
    -- Reinhard Zumkeller, Jan 31 2014
  • Maple
    isA005101 := proc(n) is(numtheory[sigma](n) > 2*n ); end proc:
    isA091191 := proc(n) local d; if isA005101(n) then for d in numtheory[divisors](n) minus {1,n} do if isA005101(d) then return false; end if; end do: return true; else false; end if; end proc:
    for n from 1 to 200 do if isA091191(n) then printf("%d\n",n) ; end if;end do: # R. J. Mathar, Mar 28 2011
  • Mathematica
    t = {}; n = 1; While[Length[t] < 100, n++; If[DivisorSigma[1, n] > 2*n && Intersection[t, Divisors[n]] == {}, AppendTo[t, n]]]; t (* T. D. Noe, Mar 28 2011 *)
    Select[Range@ 840, DivisorSigma[1, #] > 2 # && Times @@ Boole@ Map[DivisorSigma[1, #] <= 2 # &, Most@ Divisors@ #] == 1 &] (* Michael De Vlieger, Jul 16 2016 *)
  • PARI
    is(n)=sumdiv(n,d,sigma(d,-1)>2)==1 \\ Charles R Greathouse IV, Dec 05 2012
    

Formula

Erdős shows that a(n) >> n log^2 n. - Charles R Greathouse IV, Dec 05 2012

A070824 Number of divisors of n which are > 1 and < n (nontrivial divisors).

Original entry on oeis.org

0, 0, 0, 1, 0, 2, 0, 2, 1, 2, 0, 4, 0, 2, 2, 3, 0, 4, 0, 4, 2, 2, 0, 6, 1, 2, 2, 4, 0, 6, 0, 4, 2, 2, 2, 7, 0, 2, 2, 6, 0, 6, 0, 4, 4, 2, 0, 8, 1, 4, 2, 4, 0, 6, 2, 6, 2, 2, 0, 10, 0, 2, 4, 5, 2, 6, 0, 4, 2, 6, 0, 10, 0, 2, 4, 4, 2, 6, 0, 8, 3, 2, 0, 10, 2, 2
Offset: 1

Views

Author

Wolfdieter Lang, May 08 2002

Keywords

Comments

These are sometimes called the proper divisors, but see A032741 for the usual meaning of that term.
a(n) = number of ordered factorizations of n into two factors, n = 2, 3, ... If n has the prime factorization n=Product p^e(j), j=1..r, the number of compositions of the vector (e(1), ..., e(r)) equals the number of ordered factorizations of n. Andrews (1998, page 59) gives a formula for the number of m-compositions of (e(1), ..., e(r)) which equals the number f(n,m) of ordered m-factorizations of n. But with m=2 the formula reduces to f(n,2) = d(n)-2 = a(n). - Augustine O. Munagi, Mar 31 2005
a(n) = 0 if and only if n is 1 or prime. - Jon Perry, Nov 08 2008
For n > 2: number of zeros in n-th row of triangle A051778. - Reinhard Zumkeller, Dec 03 2014
a(n) = number of partitions of n in which largest and least parts occur exactly once and their difference is 2. Example: a(12) = 4 because we have [7,5], [5,4,3], [4,3,3,2], and [3,2,2,2,2,1]. In general, if d is a nontrivial divisor of n, then [d+1,{d}^(n/d-2),d-1] is a partition of n of the prescribed type. - Emeric Deutsch, Nov 03 2015
Absolute values of the inverse Möbius transform of (-1)^prime(n), n >= 2. - Wesley Ivan Hurt, Jun 22 2024

Examples

			a(12) = 4 with the nontrivial divisors 2,3,4,6.
a(24) = 6 = card({{2,12},{3,8},{4,6},{6,4},{8,3},{12,2}}). - _Peter Luschny_, Nov 14 2011
		

References

  • George E. Andrews, The Theory of Partitions, Addison-Wesley, Reading 1976; reprinted, Cambridge University Press, Cambridge, 1984, 1998.

Crossrefs

First column in the matrix power A175992^2.
Row sums of A175992 starting from the second column.
Column k=2 of A251683.

Programs

  • Haskell
    a070824 n = if n == 1 then 0 else length $ tail $ a027751_row n -- Reinhard Zumkeller, Dec 03 2014
    
  • Maple
    0, seq(numtheory[tau](n)-2,n=2..100); # Augustine O. Munagi, Mar 31 2005
  • Mathematica
    Join[{0},Rest[DivisorSigma[0,Range[90]]-2]] (* Harvey P. Dale, Jun 23 2012 *)
    a[ n_] := SeriesCoefficient[ Sum[x^(2 k)/(1 - x^k), {k, 2, n/2}], {x, 0, n}]; (* Michael Somos, Jun 24 2019 *)
  • PARI
    {a(n) = if( n<1, 0, my(v = vector(n, i, i>1)); dirmul(v, v)[n])}; /* Michael Somos, Jun 24 2019 */
    
  • PARI
    apply( A070824(n)=numdiv(n+(n<2))-2, [1..90]) \\ M. F. Hasler, Oct 11 2019
    
  • Python
    from sympy import divisor_count
    def A070824(n): return 0 if n == 1 else divisor_count(n)-2 # Chai Wah Wu, Jun 03 2022

Formula

a(n) = A000005(n)-2, n>=2 (with the number-of-divisors function d(n) = A000005(n)).
a(n) = d(n)-2, for n>=2, where d(n) is the number-of-divisors function. E.g., a(12) = 4 because 12 has 4 ordered factorizations into two factors: 2*6, 6*2, 3*4, 4*3. - Augustine O. Munagi, Mar 31 2005
G.f.: Sum_{k>=2} x^(2k)/(1-x^k). - Jon Perry, Nov 08 2008
Dirichlet generating function: (zeta(s)-1)^2. - Mats Granvik May 25 2013
Sum_{k=1..n} a(k) ~ n*log(n) + (2*gamma - 3)*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 27 2022
a(n) = abs( Sum_{d|n} (-1)^prime(d) ), n >= 2 with a(1) = 0. - Wesley Ivan Hurt, Jun 22 2024
a(n) = Sum_{k=2..n-1} floor(n/k) - floor((n-1)/k), see Chhimpa and Yadav. - Stefano Spezia, Oct 13 2024

Extensions

a(1)=0 added by Peter Luschny, Nov 14 2011
Several minor edits by M. F. Hasler, Oct 14 2019

A007956 Product of the proper divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 6, 1, 8, 3, 10, 1, 144, 1, 14, 15, 64, 1, 324, 1, 400, 21, 22, 1, 13824, 5, 26, 27, 784, 1, 27000, 1, 1024, 33, 34, 35, 279936, 1, 38, 39, 64000, 1, 74088, 1, 1936, 2025, 46, 1, 5308416, 7, 2500, 51, 2704, 1, 157464, 55, 175616, 57, 58, 1, 777600000, 1, 62, 3969, 32768, 65
Offset: 1

Views

Author

R. Muller

Keywords

Comments

From Bernard Schott, Feb 01 2019: (Start)
a(n) = 1 iff n = 1 or n is prime.
a(n) = n when n > 1 iff n has exactly four divisors, equally, iff n is either the cube of a prime or the product of two different primes, so iff n belongs to A030513 (very nice proof in Sierpiński).
a(p^3) = 1 * p * p^2 = p^3; a(p*q) = 1 * p * q = p*q.
As a(1) = 1, {1} Union A030513 = A007422, fixed points of this sequence. (End)

Examples

			a(18) = 1 * 2 * 3 * 6 * 9 = 324. - _Bernard Schott_, Jan 31 2019
		

References

  • József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 1, p. 57.
  • Wacław Sierpiński, Elementary Theory of Numbers, Ex. 2 p. 174, Warsaw, 1964.

Crossrefs

Cf. A007422 (fixed points). A030513 (subsequence).
Cf. A001065 (sums of proper divisors).

Programs

  • Haskell
    a007956 = product . a027751_row
    -- Reinhard Zumkeller, Feb 04 2013, Nov 02 2011
    
  • Maple
    A007956 := n -> mul(i,i=op(numtheory[divisors](n) minus {1,n}));
    seq(A007956(i), i=1..79); # Peter Luschny, Mar 22 2011
  • Mathematica
    Table[Times@@Most[Divisors[n]], {n, 65}] (* Alonso del Arte, Apr 18 2011 *)
    a[n_] := n^(DivisorSigma[0, n]/2 - 1); Table[a[n], {n, 1, 65}] (* Jean-François Alcover, Oct 07 2013 *)
  • PARI
    A007956(n) = local(a);a=1;fordiv(n,d,a=a*d);a/n \\ Michael B. Porter, Dec 01 2009
    
  • PARI
    a(n)=my(k); if(issquare(n, &k), k^(numdiv(n)-2), n^(numdiv(n)/2-1)) \\ Charles R Greathouse IV, Oct 15 2015
    
  • Python
    from math import isqrt
    from sympy import divisor_count
    def A007956(n): return isqrt(n)**(d-2) if (d:=divisor_count(n))&1 else n**((d>>1)-1) # Chai Wah Wu, Jun 18 2023

Formula

a(n) = A007955(n)/n = n^(A000005(n)/2-1) = sqrt(n^(number of factors of n other than 1 and n)).
a(n) = Product_{k=1..A000005(n)-1} A027751(n,k). - Reinhard Zumkeller, Feb 04 2013
a(n) = A240694(n, A000005(n)-1) for n > 1. - Reinhard Zumkeller, Apr 10 2014
Sum_{k=1..n} 1/a(k) ~ pi(n) + log(log(n))^2 + c_1*log(log(n)) + c_2 + O(log(log(n))/log(n)), where pi(n) = A000720(n) and c_1 and c_2 are constants (Weiyi, 2004; Sandor and Crstici, 2004). - Amiram Eldar, Oct 29 2022

Extensions

More terms from Scott Lindhurst (ScottL(AT)alumni.princeton.edu)
Showing 1-10 of 61 results. Next