A167934 a(n) = A000041(n) - A032741(n).
1, 1, 1, 2, 3, 6, 8, 14, 19, 28, 39, 55, 72, 100, 132, 173, 227, 296, 380, 489, 622, 789, 999, 1254, 1568, 1956, 2433, 3007, 3713, 4564, 5597, 6841, 8344, 10140, 12307, 14880, 17969, 21636, 26012, 31182, 37331, 44582, 53167, 63260, 75170
Offset: 0
Keywords
Examples
The partitions of n = 6 are: 6 ....................... All parts are equal, but included .. (1). 5 + 1 ................... All parts are not equal ............ (2). 4 + 2 ................... All parts are not equal ............ (3). 4 + 1 + 1 ............... All parts are not equal ............ (4). 3 + 3 ................... All parts are equal, not included. 3 + 2 + 1 ............... All parts are not equal ............ (5). 3 + 1 + 1 + 1 ........... All parts are not equal ............ (6). 2 + 2 + 2 ............... All parts are equal, not included. 2 + 2 + 1 + 1 ........... All parts are not equal ............ (7). 2 + 1 + 1 + 1 + 1 ....... All parts are not equal ............ (8). 1 + 1 + 1 + 1 + 1 + 1 ... All parts are equal, not included. Then a(6) = 8.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- Omar E. Pol, Illustration of the shell model of partitions (2D and 3D view)
- Omar E. Pol, Illustration of the shell model of partitions (2D view)
- Omar E. Pol, Illustration of the shell model of partitions (3D view)
Crossrefs
Programs
-
Maple
b:= proc(n, i, k) option remember; if n<0 then 0 elif n=0 then `if`(k=0, 1, 0) elif i=0 then 0 else b(n, i-1, k)+ b(n-i, i, `if`(k<0, i, `if`(k<>i, 0, k))) fi end: a:= n-> 1 +b(n, n-1, -1): seq(a(n), n=0..50); # Alois P. Heinz, Dec 01 2010
-
Mathematica
a[0] = 1; a[n_] := PartitionsP[n] - DivisorSigma[0, n] + 1; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 08 2016 *)
Extensions
More terms from Alois P. Heinz, Dec 01 2010
Comments