A002182 Highly composite numbers: numbers n where d(n), the number of divisors of n (A000005), increases to a record.
1, 2, 4, 6, 12, 24, 36, 48, 60, 120, 180, 240, 360, 720, 840, 1260, 1680, 2520, 5040, 7560, 10080, 15120, 20160, 25200, 27720, 45360, 50400, 55440, 83160, 110880, 166320, 221760, 277200, 332640, 498960, 554400, 665280, 720720, 1081080, 1441440, 2162160
Offset: 1
Examples
a(5) = 12 is in the sequence because A000005(12) is larger than any earlier value in A000005. - _M. F. Hasler_, Jan 03 2020
References
- CRC Press Standard Mathematical Tables, 28th Ed, p. 61.
- J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 180, p. 56, Ellipses, Paris 2008.
- L. E. Dickson, History of Theory of Numbers, I, p. 323.
- Ross Honsberger, An introduction to Ramanujan's Highly Composite Numbers, Chap. 14 pp. 193-200 Mathematical Gems III, DME no. 9 MAA 1985
- Jean-Louis Nicolas, On highly composite numbers, pp. 215-244 in Ramanujan Revisited, Editors G. E. Andrews et al., Academic Press 1988
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 88.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, 128.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000 (obtained from A. Flammenkamp's data; first 1000 terms from T. D. Noe)
- Yu. Bilu, P. Habegger, and L. Kühne, Effective bounds for singular units, arXiv:1805.07167 [math.NT], 2018.
- Benjamin Braun and Brian Davis, Antichain Simplices, arXiv:1901.01417 [math.CO], 2019.
- Harold W. Ellingsen, Jr., A Fresh Look at Highly Composite Numbers, The American Mathematical Monthly, Vol. 126, No. 8 (2019), pp. 740-741.
- Paul Erdős, On Highly composite numbers, J. London Math. Soc., Vol. 19 (1944), pp. 130-133, MR7,145d; Zentralblatt 61,79.
- Achim Flammenkamp, Highly composite numbers.
- Achim Flammenkamp, List of the first 1200 highly composite numbers.
- Achim Flammenkamp, List of the first 779,674 highly composite numbers.
- James Grime and Brady Haran, 5040 and other Anti-Prime Numbers, Numberphile video (2016).
- Bob Hinman, Letter to N. J. A. Sloane, Aug. 1980.
- Ivan N. Ianakiev, On the question "Which Highly composite numbers (A002182) are Zumkeller numbers (A083207)?".
- Stepan Kochemazov, Oleg Zaikin, Eduard Vatutin, and Alexey Belyshev, Enumerating Diagonal Latin Squares of Order Up to 9, J. Int. Seq., Vol. 23 (2020), Article 20.1.2.
- Aneesh M. Koya and P. P. Deepthi, Plug and play self-configurable IoT gateway node for telemonitoring of ECG, Computers in Biology and Medicine, Vol. 112 (2019), 103359.
- Jeffrey C. Lagarias, An elementary problem equivalent to the Riemann hypothesis, Am. Math. Monthly 109 (#6, 2002), 534-543; arXiv:math/0008177 [math.NT], 2000-2001.
- Bill Lauritzen, Versatile Numbers -Versatile Economics.
- Benny Lim, Prime Numbers Generated From Highly Composite Numbers, Parabola Magazine, Volume 54, Issue 3, (2018).
- R. J. Mathar, Maple program to convert the Flammenkamp file to an OEIS b-file.
- R. J. Mathar, Output of above Maple program. [Uncompresses to 9.1 MB]
- Graeme McRae, Highly Composite Numbers.
- Jean-Louis Nicolas, Ordre maximal d'un élément du groupe S_n de permutations et 'highly composite numbers' (Text in French).
- Jean-Louis Nicolas and Guy Robin, Highly Composite Numbers by Srinivasa Ramanujan, The Ramanujan Journal, Vol. 1(2), pp. 119-153, Kluwer Academics Pub.
- Kevin O'Bryant, PlanetMath.org, Highly composite number.
- S. Ramanujan, Highly composite numbers, Proceedings of the London Mathematical Society, Ser. 2, Vol. XIV, No. 1 (1915), pp. 347-409. (DOI: 10.1112/plms/s2_14.1.347, also available with an additional footnote in the PDF at http://ramanujan.sirinudi.org/Volumes/published/ram15.html)
- Steven Ratering, An interesting subset of the highly composite numbers, Math. Mag., Vol. 64, No. 5 (1991), pp. 343-346.
- Guy Robin, Méthodes d'optimisation pour un problème de théorie des nombres, RAIRO Informatique Théorique, Vol. 17, No. 3 (1983), pp. 239-247.
- Vladimir Shevelev, On Erdős constant, arXiv:1605.08884 [math.NT], 2016.
- D. B. Siano and J. D. Siano, An Algorithm for Generating Highly Composite Numbers, 1994.
- N. J. A. Sloane, Transforms.
- Michel Waldschmidt, From highly composite numbers to transcendental number theory, 2013.
- Eric Weisstein's World of Mathematics, Highly Composite Number.
- Wikipedia, Highly composite number.
Crossrefs
Cf. A000005 (number of divisors), A002110, A002183, A002473, A004394, A025487, A106037, A108602, A112778, A112779, A112780, A112781, A006218, A126098, A002201, A072938, A094348, A003418, A161184, A037992 (infinitary analog), A108951, A329902, A352418.
Cf. A261100 (a left inverse).
Cf. A002808. - Peter J. Marko, Aug 16 2018
Cf. A279930 (highly composite and highly Brazilian).
Cf. A068507 (terms such that a(n)+-1 are twin primes).
Cf. A199337 (number of terms not divisible by n).
Programs
-
Mathematica
a = 0; Do[b = DivisorSigma[0, n]; If[b > a, a = b; Print[n]], {n, 1, 10^7}] (* Convert A. Flammenkamp's 779674-term dataset; first, decompress, rename "HCN.txt": *) a = Times @@ {Times @@ Prime@ Range@ ToExpression@ First@ #1, If[# == {}, 1, Times @@ MapIndexed[Prime[First@ #2]^#1 &, #]] &@ DeleteCases[-1 + Flatten@ Map[If[StringFreeQ[#, "^"], ToExpression@ #, ConstantArray[#1, #2] & @@ ToExpression@ StringSplit[#, "^"]] &, #2], 0]} & @@ TakeDrop[StringSplit@ #, 1] & /@ Import["HCN.txt", "Data"] (* Michael De Vlieger, May 08 2018 *) DeleteDuplicates[Table[{n,DivisorSigma[0,n]},{n,2163000}],GreaterEqual[ #1[[2]],#2[[2]]]&] [[All,1]] (* Harvey P. Dale, May 13 2022 *) NestList[Function[last, Module[{d = DivisorSigma[0, last]}, NestWhile[# + 1 &, last, DivisorSigma[0, #] <= d &]]], 1, 40] (* Steven Lu, Mar 30 2023 *)
-
PARI
print1(r=1); forstep(n=2,1e5,2, if(numdiv(n)>r, r=numdiv(n); print1(", "n))) \\ Charles R Greathouse IV, Jun 10 2011
-
PARI
v002182 = [1]/*vector for memoization*/; A002182(n, i = #v002182) ={ if(n > i, v002182 = Vec(v002182, n); my(k = v002182[i], d, s=1); until(i == n, d = numdiv(k); s<60 && k>=60 && s=60; until(numdiv(k += s) > d,); v002182[i++] = k); k, v002182[n])} \\ Antti Karttunen, Jun 06 2017; edited by M. F. Hasler, Jan 03 2020 and Jun 20 2022
-
PARI
is_A002182(n, a=1, b=1)={while(n>A002182(b*=2), a*=2); until(a>b, my(m=(a+b)\2, t=A002182(m)); if(t
n, b=m-1, return(m)))} \\ Also used in other sequences. - M. F. Hasler, Jun 20 2022 -
Python
from sympy import divisor_count A002182_list, r = [], 0 for i in range(1,10**4): d = divisor_count(i) if d > r: r = d A002182_list.append(i) # Chai Wah Wu, Mar 23 2015
Formula
Also, for n >= 2, smallest values of p for which A006218(p)-A006318(p-1) = A002183(n). - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), Jun 23 2007
a(n+1) < a(n) * (1+log(a(n))^-c) for some positive c (see Erdős). - David A. Corneth, May 16 2016
a(n+1) <= 2*a(n). For cases where the equal sign holds, see A072938. - A.H.M. Smeets, Jul 10 2021
Sum_{n>=1} 1/a(n) = A352418. - Amiram Eldar, Mar 24 2022
Extensions
Jun 19 1996: Changed beginning to start at 1.
Jul 10 1996: Matthew Conroy points out that these are different from the super-abundant numbers - see A004394. Last 8 terms sent by J. Lowell; checked by Jud McCranie.
Description corrected by Gerard Schildberger and N. J. A. Sloane, Apr 04 2001
Additional references from Lekraj Beedassy, Jul 24 2001
Comments