A027871 a(n) = Product_{i=1..n} (3^i - 1).
1, 2, 16, 416, 33280, 8053760, 5863137280, 12816818094080, 84078326697164800, 1654829626053597593600, 97714379759212830706892800, 17309711516825516108403231948800
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
Magma
[1] cat [&*[ 3^k-1: k in [1..n] ]: n in [1..11]]; // Vincenzo Librandi, Dec 24 2015
-
Maple
A027871 := proc(n) mul( 3^i-1,i=1..n) ; end proc: seq(A027871(n),n=0..8) ; # R. J. Mathar, Jul 13 2017
-
Mathematica
Table[Product[(3^k-1),{k,1,n}],{n,0,20}] (* Vaclav Kotesovec, Jul 17 2015 *) Abs@QPochhammer[3, 3, Range[0, 10]] (* Vladimir Reshetnikov, Nov 20 2015 *)
-
PARI
a(n) = prod(i=1, n, 3^i-1); \\ Michel Marcus, Nov 21 2015
Formula
a(n) ~ c * 3^(n*(n+1)/2), where c = A100220 = Product_{k>=1} (1-1/3^k) = 0.560126077927948944969792243314140014379736333798... . - Vaclav Kotesovec, Nov 21 2015
a(n) = 3^(binomial(n+1,2))*(1/3;1/3){n}, where (a;q){n} is the q-Pochhammer symbol. - G. C. Greubel, Dec 24 2015
a(n) = Product_{i=1..n} A024023(i). - Michel Marcus, Dec 27 2015
G.f.: Sum_{n>=0} 3^(n*(n+1)/2)*x^n / Product_{k=0..n} (1 + 3^k*x). - Ilya Gutkovskiy, May 22 2017
From Amiram Eldar, Feb 19 2022: (Start)
Sum_{n>=0} 1/a(n) = A132324.
Sum_{n>=0} (-1)^n/a(n) = A100220. (End)
Comments