A027907 Triangle of trinomial coefficients T(n,k) (n >= 0, 0 <= k <= 2*n), read by rows: n-th row is obtained by expanding (1 + x + x^2)^n.
1, 1, 1, 1, 1, 2, 3, 2, 1, 1, 3, 6, 7, 6, 3, 1, 1, 4, 10, 16, 19, 16, 10, 4, 1, 1, 5, 15, 30, 45, 51, 45, 30, 15, 5, 1, 1, 6, 21, 50, 90, 126, 141, 126, 90, 50, 21, 6, 1, 1, 7, 28, 77, 161, 266, 357, 393, 357, 266, 161, 77, 28, 7, 1, 1, 8, 36, 112, 266
Offset: 0
Examples
The triangle T(n, k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 0: 1 1: 1 1 1 2: 1 2 3 2 1 3: 1 3 6 7 6 3 1 4: 1 4 10 16 19 16 10 4 1 5: 1 5 15 30 45 51 45 30 15 5 1 6: 1 6 21 50 90 126 141 126 90 50 21 6 1 Concatenated rows: G.f. = 1 + (x^2+x+1)*x + (x^2+x+1)^2*x^4 + (x^2+x+1)^3*x^9 + ... = 1 + (x + x^2 + x^3) + (x^4 + 2*x^5 + 3*x^6 + 2*x^7 + x^8) + (x^9 + 3*x^10 + 6*x^11 + 7*x^12 + 6*x^13 + 3*x^14 + x^15) + ... . As a centered triangle, this begins: 1 1 1 1 1 2 3 2 1 1 3 6 7 6 3 1
References
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
- D. C. Fielder and C. O. Alford, Pascal's triangle: top gun or just one of the gang?, in G E Bergum et al., eds., Applications of Fibonacci Numbers Vol. 4 1991 pp. 77-90 (Kluwer).
- L. Kleinrock, Uniform permutation of sequences, JPL Space Programs Summary, Vol. 37-64-III, Apr 30, 1970, pp. 32-43.
Links
- Seiichi Manyama, Rows n=0..99 of triangle, flattened (Rows 0..30 from T. D. Noe)
- Moussa Ahmia and Hacene Belbachir, Preserving log-convexity for generalized Pascal triangles, Electronic Journal of Combinatorics, 19(2) (2012), #P16. - _N. J. A. Sloane_, Oct 13 2012
- Tewodros Amdeberhan, Moa Apagodu and Doron Zeilberger, Wilf's "Snake Oil" Method Proves an Identity in The Motzkin Triangle, arXiv:1507.07660 [math.CO], 2015.
- Said Amrouche and Hacène Belbachir, Asymmetric extension of Pascal-Dellanoy triangles, arXiv:2001.11665 [math.CO], 2020.
- G. E. Andrews, Euler's 'exemplum memorabile inductionis fallacis' and q-trinomial coefficients, J. Amer. Math. Soc. 3 (1990) 653-669.
- G. E. Andrews, Three aspects of partitions, Séminaire Lotharingien de Combinatoire, B25f (1990), 1 p.
- George E. Andrews and Alexander Berkovich, A trinomial analogue of Bailey's lemma and N= 2 superconformal invariance, arXiv:q-alg/9702008, 1997; Communications in mathematical physics 192.2 (1998): 245-260. See page 248.
- Armen G. Bagdasaryan and Ovidiu Bagdasar, On some results concerning generalized arithmetic triangles, Electronic Notes in Discrete Mathematics (2018) Vol. 67, 71-77.
- Abdelghafour Bazeniar, Moussa Ahmia and Hacène Belbachir, Connection between bi^s nomial coefficients with their analogs and symmetric functions, Turkish Journal of Mathematics, Vol. 42, No. 3 (2018), pp. 807-818.
- Hacène Belbachir and Oussama Igueroufa, Combinatorial interpretation of bisnomial coefficients and Generalized Catalan numbers, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 47-54.
- Hacène Belbachir and Yassine Otmani, Quadrinomial-Like Versions for Wolstenholme, Morley and Glaisher Congruences, Integers (2023) Vol. 23.
- Leonardo Bennun, A Pragmatic Smoothing Method for Improving the Quality of the Results in Atomic Spectroscopy, arXiv:1603.02061 [physics.atom-ph], 2016. See reference 22.
- Alexander Berkovich and Ali K. Uncu, Elementary Polynomial Identities Involving q-Trinomial Coefficients, arXiv:1810.06497 [math.NT], 2018.
- F. R. Bernhart, Catalan, Motzkin and Riordan numbers, Discr. Math., 204 (1999) 73-112.
- Jan Bok, Graph-indexed random walks on special classes of graphs, arXiv:1801.05498 [math.CO], 2018.
- Richard C. Bollinger, Reliability and Runs of Ones, Mathematics Magazine, 57(1) (1984), 34-37.
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see p. 17.
- Eduardo H. M. Brietzke, Generalization of an identity of Andrews, Fibonacci Quart. 44(2) (2006), 166-171.
- Rezig Boualam and Moussa Ahmia, Log-concavity and strong q-log-convexity for some generalized triangular arrays, arXiv:2409.18886 [math.CO], 2024. See p. 2.
- L. Carlitz, Comment on the paper "Some probability distributions and their associated structures", Math. Magazine, 37:1 (1964), 51-52. [The triangle is on page 51]
- Ji Young Choi, Digit Sums Generalizing Binomial Coefficients, J. Int. Seq. 22 (2019), Article 19.8.3.
- Karl Dilcher and Larry Ericksen, Polynomials and algebraic curves related to certain binary and b-ary overpartitions, arXiv:2405.12024 [math.CO], 2024. See p. 7.
- S. Eger, Some Elementary Congruences for the Number of Weighted Integer Compositions, J. Int. Seq. 18 (2015), #15.4.1.
- L. Euler, Disquitiones analyticae super evolutione potestatis trinomialis (1+x+xx)^n, 1805. This is paper E722 in Eneström's index of Euler's works, translated from Latin to German. The sequence appears in the table on page 2.
- L. Euler, On the expansion of the power of any polynomial (1+x+x^2+x^3+x^4+etc.)^n, arXiv:math/0505425 [math.HO], 2005.
- L. Euler, De evolutione potestatis polynomialis cuiuscunque (1 + x + x^2 + x^3 + x^4 + etc.)^n, E709.
- Nour-Eddine Fahssi, Polynomial Triangles Revisited, arXiv:1202.0228 [math.CO], 2012.
- Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, arXiv:1203.6792 [math.CO], 2012 and J. Int. Seq., 17 (2014), #14.1.5.
- D. Fielder, Letter to N. J. A. Sloane, Jun. 1991.
- D. C. Fielder and C. O. Alford, Pascal's triangle: top gun or just one of the gang?, Applications of Fibonacci Numbers 4 (1991), 77-90. (Annotated scanned copy)
- S. R. Finch, P. Sebah and Z.-Q. Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2008.
- A. Fink, R. K. Guy and M. Krusemeyer, Partitions with parts occurring at most thrice, Contrib. Discr. Math. 3(2) (2008), 76-114.
- W. Florek and T. Lulek, Combinatorial analysis of magnetic configurations, Séminaire Lotharingien de Combinatoire, B26d (1991), 12 pp.
- J. E. Freund, Restricted Occupancy Theory - A Generalization of Pascal's Triangle, American Mathematical Monthly, Vol. 63(1) (1956), 20-27.
- Berit Nilsen Givens, The trinomial triangle knitted shawl, J. Math. Arts (2023).
- Fern Gossow, Lyndon-like cyclic sieving and Gauss congruence, arXiv:2410.05678 [math.CO], 2024. See p. 17.
- R. K. Guy, Letter to N. J. A. Sloane, 1987
- V. E. Hoggatt, Jr. and M. Bicknell, Diagonal sums of generalized Pascal triangles, Fib. Quart. 7 (1969), 341-358 and 393.
- Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
- Veronika Irvine, Lace Tessellations: A mathematical model for bobbin lace and an exhaustive combinatorial search for patterns, PhD Dissertation, University of Victoria, 2016.
- S. Kak, The Golden Mean and the Physics of Aesthetics, arXiv:physics/0411195 [physics.hist-ph], 2004.
- L. Kleinrock, Uniform permutation of sequences, JPL Space Programs Summary, Vol. 37-64-III, Apr 30, 1970, pp. 32-43. [Annotated scanned copy]
- László Németh, The trinomial transform triangle, J. Int. Seqs., Vol. 21 (2018), Article 18.7.3. Also arXiv:1807.07109 [math.NT], 2018.
- T. Neuschel, A Note on Extended Binomial Coefficients, J. Int. Seq. 17 (2014), #14.10.4.
- Yassine Otmani, The 2-Pascal Triangle and a Related Riordan Array, J. Int. Seq. (2025) Vol. 28, Issue 3, Art. No. 25.3.5. See p. 4.
- Andrei G. Pronko, Periodic Motzkin chain: Ground states and symmetries, arXiv:2504.00835 [math-ph], 2025. See p. 16.
- Jack Ramsay, On Arithmetical Triangles, The Pulse of Long Island, June 1965 [Mentions application to design of antenna arrays. Annotated scan.]
- L. W. Shapiro, S. Getu, W.-J. Woan and L. C. Woodson, The Riordan group, Discrete Applied Math., 34 (1991), 229-239.
- Eric Weisstein's World of Mathematics, Trinomial Triangle.
- Eric Weisstein's World of Mathematics, Trinomial Coefficient.
- Sheng-Liang Yang and Yuan-Yuan Gao, The Pascal rhombus and Riordan arrays, Fib. Q., 56:4 (2018), 337-347. See Fig. 3.
- Xuxu Zhao, Xu Wang and Haiyuan Yao, Some enumerative properties of a class of Fibonacci-like cubes, arXiv:1905.00573 [math.CO], 2019.
- Bao-Xuan Zhu, Linear transformations and strong q-log-concavity for certain combinatorial triangle, arXiv:1605.00257 [math.CO], 2016.
Crossrefs
Programs
-
Haskell
a027907 n k = a027907_tabf !! n !! k a027907_row n = a027907_tabf !! n a027907_tabf = [1] : iterate f [1, 1, 1] where f row = zipWith3 (((+) .) . (+)) (row ++ [0, 0]) ([0] ++ row ++ [0]) ([0, 0] ++ row) a027907_list = concat a027907_tabf -- Reinhard Zumkeller, Jul 06 2014, Jan 22 2013, Apr 02 2011
-
Maple
A027907 := proc(n,k) expand((1+x+x^2)^n) ; coeftayl(%,x=0,k) ; end proc: seq(seq(A027907(n,k),k=0..2*n),n=0..5) ; # R. J. Mathar, Jun 13 2011 T := (n,k) -> simplify(GegenbauerC(`if`(k
Peter Luschny, May 08 2016 -
Mathematica
Table[CoefficientList[Series[(Sum[x^i, {i, 0, 2}])^n, {x, 0, 2 n}], x], {n, 0, 10}] // Grid (* Geoffrey Critzer, Mar 31 2010 *) Table[Sum[Binomial[n, i]Binomial[n - i, k - 2i], {i, 0, n}], {n, 0, 10}, {k, 0, 2n}] (* Adi Dani, May 07 2011 *) T[ n_, k_] := If[ n < 0, 0, Coefficient[ (1 + x + x^2)^n, x, k]]; (* Michael Somos, Nov 08 2016 *) Flatten[DeleteCases[#,0]&/@CellularAutomaton[{Total[#] &, {}, 1}, {{1}, 0}, 8] ] (* Giorgos Kalogeropoulos, Nov 09 2021 *)
-
Maxima
trinomial(n,k):=coeff(expand((1+x+x^2)^n),x,k); create_list(trinomial(n,k),n,0,8,k,0,2*n); /* Emanuele Munarini, Mar 15 2011 */
-
Maxima
create_list(ultraspherical(k,-n,-1/2),n,0,6,k,0,2*n); /* Emanuele Munarini, Oct 18 2016 */
-
PARI
{T(n, k) = if( n<0, 0, polcoeff( (1 + x + x^2)^n, k))}; /* Michael Somos, Jun 27 2003 */
Formula
G.f.: 1/(1-z*(1+w+w^2)).
T(n,k) = Sum_{r=0..floor(k/3)} (-1)^r*binomial(n, r)*binomial(k-3*r+n-1, n-1).
Recurrence: T(0,0) = 1; T(n,k) = T(n-1,k-2) + T(n-1,k-1) + T(n-1,k-0), with T(n,k) = 0 if k < 0 or k > 2*n:
T(i,0) = T(i, 2*i) = 1 for i >= 0, T(i, 1) = T(i, 2*i-1) = i for i >= 1 and for i >= 2 and 2 <= j <= i-2, T(i, j) = T(i-1, j-2) + T(i-1, j-1) + T(i-1, j).
The row sums are powers of 3 (A000244). - Gerald McGarvey, Aug 14 2004
T(n,k) = Sum_{i=0..floor(k/2)} binomial(n, 2*i+n-k) * binomial(2*i+n-k, i). - Ralf Stephan, Jan 26 2005
T(n,k) = Sum_{j=0..n} binomial(n, j) * binomial(j, k-j). - Paul Barry, May 21 2005
T(n,k) = Sum_{j=0..n} binomial(k-j, j) * binomial(n, k-j). - Paul Barry, Nov 04 2005
From Loic Turban (turban(AT)lpm.u-nancy.fr), Aug 31 2006: (Start)
T(n,k) = Sum_{j=0..n} (-1)^j * binomial(n,j) * binomial(2*n-2*j, k-j); (G. E. Andrews (1990)) obtained by expanding ((1+x)^2 - x)^n.
T(n,k) = Sum_{j=0..n} binomial(n,j) * binomial(n-j, k-2*j); obtained by expanding ((1+x) + x^2)^n.
T(n,k) = (-1)^k*Sum_{j=0..n} (-3)^j * binomial(n,j) * binomial(2*n-2*j, k-j); obtained by expanding ((1-x)^2 + 3*x)^n.
T(n,k) = (1/2)^k * Sum_{j=0..n} 3^j * binomial(n,j) * binomial(2*n-2*j, k-2*j); obtained by expanding ((1+x/2)^2 + (3/4)*x^2)^n.
T(n,k) = (2^k/4^n) * Sum_{j=0..n} 3^j * binomial(n,j) * binomial(2*n-2*j, k); obtained by expanding ((1/2+x)^2 + 3/4)^n using T(n,k) = T(2*n-k). (End)
From Paul D. Hanna, Apr 18 2012: (Start)
Let A(x) be the g.f. of the flattened sequence, then:
G.f.: A(x) = Sum_{n>=0} x^(n^2) * (1+x+x^2)^n.
G.f.: A(x) = Sum_{n>=0} x^n*(1+x+x^2)^n * Product_{k=1..n} (1 - (1+x+x^2) * x^(4*k-3)) / (1 - (1+x+x^2)*x^(4*k-1)).
G.f.: A(x) = 1/(1 - x*(1+x+x^2)/(1 + x*(1-x^2)*(1+x+x^2)/(1 - x^5*(1+x+x^2)/(1 + x^3*(1-x^4)*(1+x+x^2)/(1 - x^9*(1+x+x^2)/(1 + x^5*(1-x^6)*(1+x+x^2)/(1 - x^13* (1+x+x^2)/(1 + x^7*(1-x^8)*(1+x+x^2)/(1 - ...))))))))), a continued fraction.
(End)
Triangle: G.f. = Sum_{n>=0} (1+x+x^2)^n * x^(n^2) * y^n. - Daniel Forgues, Mar 16 2015
From Peter Luschny, May 08 2016: (Start)
T(n+1,n)/(n+1) = A001006(n) (Motzkin) for n>=0.
T(n,k) = H(n, k) if k < n else H(n, 2*n-k) where H(n,k) = binomial(n,k)*hypergeom([(1-k)/2, -k/2], [n-k+1], 4).
T(n,k) = GegenbauerC(m, -n, -1/2) where m=k if k < n else 2*n-k. (End)
T(n,k) = (-1)^k * C(2*n,k) * hypergeom([-k, -(2*n-k)], [-n+1/2], 3/4), for all k with 0 <= k <= 2n. - Robert S. Maier, Jun 13 2023
T(n,n) = Sum_{k=0..2*n} (-1)^k*(T(n,k))^2 and T(2*n,2*n) = Sum_{k=0..2*n} (T(n,k))^2 for n >= 0. - Werner Schulte, Nov 08 2016
T(n,n) = A002426(n), central trinomial coefficients. - M. F. Hasler, Nov 02 2019
Sum_{k=0..n-1} T(n, 2*k) = (3^n-1)/2. - Tony Foster III, Oct 06 2020
Comments