A027973 a(n) = T(n,n) + T(n,n+1) + ... + T(n,2n), T given by A027960.
1, 4, 9, 21, 46, 99, 209, 436, 901, 1849, 3774, 7671, 15541, 31404, 63329, 127501, 256366, 514939, 1033449, 2072676, 4154701, 8324529, 16673534, 33386671, 66837421, 133778524, 267724809, 535721061, 1071881326, 2144473299, 4290096449, 8582053396, 17167117141
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-1,-2).
Programs
-
GAP
List([0..40], n-> 2^(n+2) - Lucas(1,-1,n+2)[2]); # G. C. Greubel, Sep 26 2019
-
Magma
[2^n-Lucas(n): n in [2..40]]; // Vincenzo Librandi, May 05 2017
-
Maple
with(combinat): a[0]:=1: for n from 1 to 30 do a[n]:=2*a[n-1]+fibonacci(n+1)-fibonacci(n-3) od: seq(a[n],n=0..30); # Emeric Deutsch, Nov 29 2006
-
Mathematica
Table[2^n - LucasL[n], {n, 2, 50}] (* Vincenzo Librandi, May 05 2017 *)
-
PARI
vector(40, n, f=fibonacci; 2^(n+1) - f(n+2) - f(n) ) \\ G. C. Greubel, Sep 26 2019
-
Sage
[2^(n+2) - lucas_number2(n+2,1,-1) for n in (0..40)] # G. C. Greubel, Sep 26 2019
Formula
With a different offset: recurrence: a(-1)=a(0)=1 a(n+2) = a(n+1) + a(n) + 2^n; formula: a(n-2) = floor(2^n - phi^n) - (1-(-1)^n)/2. - Benoit Cloitre, Sep 02 2002
a(n) = 2*a(n-1) + Fibonacci(n+1) - Fibonacci(n-3) for n>=1; a(0)=1. - Emeric Deutsch, Nov 29 2006
O.g.f.: 4/(1-2*x) - (x+3)/(1-x-x^2). - R. J. Mathar, Nov 23 2007
a(n) = 2^(n+2) + F(n) - F(n+4) with F(n)=A000045(n). - Johannes W. Meijer, Aug 15 2010
Eigensequence of an infinite lower triangular matrix with the Lucas series (1, 3, 4, 7, ...) as the left border and the rest ones. - Gary W. Adamson, Jan 30 2012
a(n) = 2^(n+2) - Lucas(n+2). - Vincenzo Librandi, May 05 2017, corrected by Greg Dresden, Sep 13 2021