cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A027973 a(n) = T(n,n) + T(n,n+1) + ... + T(n,2n), T given by A027960.

Original entry on oeis.org

1, 4, 9, 21, 46, 99, 209, 436, 901, 1849, 3774, 7671, 15541, 31404, 63329, 127501, 256366, 514939, 1033449, 2072676, 4154701, 8324529, 16673534, 33386671, 66837421, 133778524, 267724809, 535721061, 1071881326, 2144473299, 4290096449, 8582053396, 17167117141
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    List([0..40], n-> 2^(n+2) - Lucas(1,-1,n+2)[2]); # G. C. Greubel, Sep 26 2019
  • Magma
    [2^n-Lucas(n): n in [2..40]]; // Vincenzo Librandi, May 05 2017
    
  • Maple
    with(combinat): a[0]:=1: for n from 1 to 30 do a[n]:=2*a[n-1]+fibonacci(n+1)-fibonacci(n-3) od: seq(a[n],n=0..30); # Emeric Deutsch, Nov 29 2006
  • Mathematica
    Table[2^n - LucasL[n], {n, 2, 50}] (* Vincenzo Librandi, May 05 2017 *)
  • PARI
    vector(40, n, f=fibonacci; 2^(n+1) - f(n+2) - f(n) ) \\ G. C. Greubel, Sep 26 2019
    
  • Sage
    [2^(n+2) - lucas_number2(n+2,1,-1) for n in (0..40)] # G. C. Greubel, Sep 26 2019
    

Formula

With a different offset: recurrence: a(-1)=a(0)=1 a(n+2) = a(n+1) + a(n) + 2^n; formula: a(n-2) = floor(2^n - phi^n) - (1-(-1)^n)/2. - Benoit Cloitre, Sep 02 2002
a(n) = A101220(4, 2, n+1) - A101220(4, 2, n). - Ross La Haye, Aug 05 2005
a(n) = 2*a(n-1) + Fibonacci(n+1) - Fibonacci(n-3) for n>=1; a(0)=1. - Emeric Deutsch, Nov 29 2006
O.g.f.: 4/(1-2*x) - (x+3)/(1-x-x^2). - R. J. Mathar, Nov 23 2007
a(n) = 2^(n+2) + F(n) - F(n+4) with F(n)=A000045(n). - Johannes W. Meijer, Aug 15 2010
Eigensequence of an infinite lower triangular matrix with the Lucas series (1, 3, 4, 7, ...) as the left border and the rest ones. - Gary W. Adamson, Jan 30 2012
a(n) = 2^(n+2) - Lucas(n+2). - Vincenzo Librandi, May 05 2017, corrected by Greg Dresden, Sep 13 2021