A028310 Expansion of (1 - x + x^2) / (1 - x)^2 in powers of x.
1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71
Offset: 0
Examples
G.f. = 1 + x + 2*x^2 + 3*x^3 + 4*x^4 + 5*x^5 + 6*x^6 + 7*x^7 + 8*x^8 + 9*x^9 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Andrei Asinowski, Cyril Banderier, and Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).
- Daniel Birmajer, Juan B. Gil, Jordan O. Tirrell, and Michael D. Weiner, Pattern-avoiding stabilized-interval-free permutations, arXiv:2306.03155 [math.CO], 2023.
- Olivia Nabawanda and Fanja Rakotondrajao, The sets of flattened partitions with forbidden patterns, arXiv:2011.07304 [math.CO], 2020.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- Oeis Wiki, Autosequence
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
- Michael Somos, Rational Function Multiplicative Coefficients
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
- Index entries for Molien series
- Index entries for sequences related to Engel expansions
Crossrefs
Programs
-
Haskell
a028310 n = 0 ^ n + n a028310_list = 1 : [1..] -- Reinhard Zumkeller, Nov 06 2012
-
Magma
[n eq 0 select 1 else n: n in [0..75]]; // G. C. Greubel, Jan 05 2024
-
Maple
a:= n-> `if`(n=0, 1, n): seq(a(n), n=0..60);
-
Mathematica
Denominator@ CoefficientList[Series[Log[1+x], {x,0,75}], x] (* or *) CoefficientList[ Series[(1 -x +x^2)/(1-x)^2, {x,0,75}], x] (* Robert G. Wilson v, Aug 14 2015 *) Join[{1}, Range[75]] (* G. C. Greubel, Jan 05 2024 *) LinearRecurrence[{2,-1},{1,1,2},80] (* Harvey P. Dale, Jan 29 2025 *)
-
PARI
{a(n) = (n==0) + max(n, 0)} /* Michael Somos, Feb 02 2004 */
-
PARI
A028310(n)=n+!n \\ M. F. Hasler, Jan 16 2012
-
Python
def A028310(n): return n|bool(n)^1 # Chai Wah Wu, Jul 13 2023
-
SageMath
[n + int(n==0) for n in range(76)] # G. C. Greubel, Jan 05 2024
Formula
Binomial transform is A005183. - Paul Barry, Jul 21 2003
G.f.: (1 - x + x^2) / (1 - x)^2 = (1 - x^6) /((1 - x) * (1 - x^2) * (1 - x^3)) = (1 + x^3) / ((1 - x) * (1 - x^2)). a(0) = 1, a(n) = n if n>0.
Euler transform of length 6 sequence [ 1, 1, 1, 0, 0, -1]. - Michael Somos Jul 30 2006
G.f.: 1 / (1 - x / (1 - x / (1 + x / (1 - x)))). - Michael Somos, Apr 05 2012
G.f. of A112934(x) = 1 / (1 - a(0)*x / (1 - a(1)*x / ...)). - Michael Somos, Apr 05 2012
a(n) = A000027(n) unless n=0.
a(n) = Sum_{k=0..n} A123110(n,k). - Philippe Deléham, Oct 06 2009
E.g.f: 1+x*exp(x). - Wolfdieter Lang, May 03 2010
a(n) = sqrt(floor[A204503(n+3)/9]). - M. F. Hasler, Jan 16 2012
E.g.f.: 1-x + x*E(0), where E(k) = 2 + x/(2*k+1 - x/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 24 2013
Comments