A028326 Twice Pascal's triangle A007318: T(n,k) = 2*C(n,k).
2, 2, 2, 2, 4, 2, 2, 6, 6, 2, 2, 8, 12, 8, 2, 2, 10, 20, 20, 10, 2, 2, 12, 30, 40, 30, 12, 2, 2, 14, 42, 70, 70, 42, 14, 2, 2, 16, 56, 112, 140, 112, 56, 16, 2, 2, 18, 72, 168, 252, 252, 168, 72, 18, 2, 2, 20, 90, 240, 420, 504, 420, 240, 90, 20, 2, 2, 22, 110, 330, 660, 924, 924, 660, 330, 110, 22, 2
Offset: 0
Examples
Triangle begins: 2; 2, 2; 2, 4, 2; 2, 6, 6, 2; 2, 8, 12, 8, 2; 2, 10, 20, 20, 10, 2; 2, 12, 30, 40, 30, 12, 2; 2, 14, 42, 70, 70, 42, 14, 2; 2, 16, 56, 112, 140, 112, 56, 16, 2; 2, 18, 72, 168, 252, 252, 168, 72, 18, 2; 2, 20, 90, 240, 420, 504, 420, 240, 90, 20, 2; 2, 22, 110, 330, 660, 924, 924, 660, 330, 110, 22, 2; 2, 24, 132, 440, 990, 1584, 1848, 1584, 990, 440, 132, 24, 2;
References
- I. Goulden and D. Jackson, Combinatorial Enumeration, John Wiley and Sons, 1983, page 76.
Links
- Reinhard Zumkeller, Rows n=0..150 of triangle, flattened
- R. J. Mathar, Paving rectangular regions with rectangular tiles: tatami and non-tatami tilings, arXiv:1311.6135 [math.CO], 2013, Table 48.
- Franck Ramaharo, Statistics on some classes of knot shadows, arXiv:1802.07701 [math.CO], 2018.
- Index entries for triangles and arrays related to Pascal's triangle
Programs
-
Haskell
a028326 n k = a028326_tabl !! n !! k a028326_row n = a028326_tabl !! n a028326_tabl = iterate (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [2] -- Reinhard Zumkeller, Mar 12 2012
-
Magma
[2*Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 27 2021
-
Maple
T := proc(n, k) if k=0 then 2 elif k>n then 0 else T(n-1, k)+T(n-1, k-1) fi end: for n from 0 to 13 do seq(T(n, k), k=0..n) od; # Zerinvary Lajos, Dec 16 2006
-
Mathematica
Table[2*Binomial[n, k], {n, 0, 11}, {k, 0, n}]//Flatten (* Robert G. Wilson v, Mar 05 2012 *)
-
PARI
T(n,k) = 2*binomial(n,k) \\ Charles R Greathouse IV, Feb 07 2017
-
Python
from sympy import binomial def T(n, k): return 2*binomial(n, k) for n in range(21): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Apr 29 2017
-
Sage
flatten([[2*binomial(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 27 2021
Formula
G.f. for the number of length n binary words with k runs: (1-x+x*y)/(1-x-x*y) [Goulden and Jackson]. - Geoffrey Critzer, Mar 04 2012
Extensions
More terms from Donald Manchester, Jr. (s1199170(AT)cedarnet.cedarville.edu)
Comments