cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028326 Twice Pascal's triangle A007318: T(n,k) = 2*C(n,k).

Original entry on oeis.org

2, 2, 2, 2, 4, 2, 2, 6, 6, 2, 2, 8, 12, 8, 2, 2, 10, 20, 20, 10, 2, 2, 12, 30, 40, 30, 12, 2, 2, 14, 42, 70, 70, 42, 14, 2, 2, 16, 56, 112, 140, 112, 56, 16, 2, 2, 18, 72, 168, 252, 252, 168, 72, 18, 2, 2, 20, 90, 240, 420, 504, 420, 240, 90, 20, 2, 2, 22, 110, 330, 660, 924, 924, 660, 330, 110, 22, 2
Offset: 0

Views

Author

Keywords

Comments

Also number of binary vectors of length n+1 with k+1 runs (1 <= k <= n).
If the last two entries in each row are removed and 0 replaces the entries in a checkerboard pattern, we obtain
2;
0, 6;
2, 0, 12;
0, 10, 0, 20;
2, 0, 30, 0, 30;
0, 14, 0, 70, 0, 42;
2, 0, 56, 0, 140, 0, 56;
0, 18, 0, 168, 0, 252, 0, 72;
...
This plays the same role of recurrence coefficients for second differences of polynomials as triangle A074909 plays for the first differences. - R. J. Mathar, Jul 03 2013
From Roger Ford, Jul 06 2023: (Start)
T(n,k) = the number of closed meanders with n top arches, n+1 exterior arches and with k = the number of arches of length 1 - (n+1).
Example of closed meanders with 4 top arches and 5 exterior arches:
exterior arches are top arches or bottom arches without a covering arch
/\ = top arch length 1, \/ = bottom arch length 1
/ \ Top: /\=3 / \ / \ Top: /\=2
/\ / /\ \ /\ / /\ \ / /\ \
\ \/ / \ \/ / Bottom: \/=2 \/ \ \/ / \/ Bottom: /\=3
\/ \/ k=5-5=0 \/ k=5-5=0 T(4,0) = 2
/ \ Top: /\=3 / \ Top: /\=3
/\ / /\ /\ \ / /\ \ /\ /\
\ \/ / \/ \/ Bottom: \/=3 \/ \ \/ \/ / Bottom: \/=3
\/ k=6-5=1 \____/ k=6-5=1
/ \ Top: /\=3 / \ Top: /\=3
/ /\ /\ \ /\ /\ /\ / /\ \
\/ \/ \ \/ / Bottom: \/=3 \ \/ \/ / \/ Bottom: \/=3
\/ k=6-5=1 \____/ k=6-5=1 T(4,1) = 4
/ \ Top: /\=3
/ /\ /\ /\ \ /\ /\ /\ /\ Top: /\=4
\/ \/ \/ \/ Bottom: \/=4 \ \/ \/ \/ / Bottom: ||=3
k=7-5=2 \________/ k=7-5=2 T(4,2) = 2.
(End)

Examples

			Triangle begins:
  2;
  2,  2;
  2,  4,   2;
  2,  6,   6,   2;
  2,  8,  12,   8,   2;
  2, 10,  20,  20,  10,    2;
  2, 12,  30,  40,  30,   12,    2;
  2, 14,  42,  70,  70,   42,   14,    2;
  2, 16,  56, 112, 140,  112,   56,   16,   2;
  2, 18,  72, 168, 252,  252,  168,   72,  18,   2;
  2, 20,  90, 240, 420,  504,  420,  240,  90,  20,   2;
  2, 22, 110, 330, 660,  924,  924,  660, 330, 110,  22,  2;
  2, 24, 132, 440, 990, 1584, 1848, 1584, 990, 440, 132, 24, 2;
		

References

  • I. Goulden and D. Jackson, Combinatorial Enumeration, John Wiley and Sons, 1983, page 76.

Crossrefs

Programs

  • Haskell
    a028326 n k = a028326_tabl !! n !! k
    a028326_row n = a028326_tabl !! n
    a028326_tabl = iterate
       (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [2]
    -- Reinhard Zumkeller, Mar 12 2012
    
  • Magma
    [2*Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 27 2021
    
  • Maple
    T := proc(n, k) if k=0 then 2 elif k>n then 0 else T(n-1, k)+T(n-1, k-1) fi end:
    for n from 0 to 13 do seq(T(n, k), k=0..n) od; # Zerinvary Lajos, Dec 16 2006
  • Mathematica
    Table[2*Binomial[n, k], {n, 0, 11}, {k, 0, n}]//Flatten (* Robert G. Wilson v, Mar 05 2012 *)
  • PARI
    T(n,k) = 2*binomial(n,k) \\ Charles R Greathouse IV, Feb 07 2017
    
  • Python
    from sympy import binomial
    def T(n, k):
        return 2*binomial(n, k)
    for n in range(21): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Apr 29 2017
    
  • Sage
    flatten([[2*binomial(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 27 2021

Formula

G.f. for the number of length n binary words with k runs: (1-x+x*y)/(1-x-x*y) [Goulden and Jackson]. - Geoffrey Critzer, Mar 04 2012

Extensions

More terms from Donald Manchester, Jr. (s1199170(AT)cedarnet.cedarville.edu)