cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A028327 Elements in the even-Pascal triangle A028326 that are not 2.

Original entry on oeis.org

4, 6, 6, 8, 12, 8, 10, 20, 20, 10, 12, 30, 40, 30, 12, 14, 42, 70, 70, 42, 14, 16, 56, 112, 140, 112, 56, 16, 18, 72, 168, 252, 252, 168, 72, 18, 20, 90, 240, 420, 504, 420, 240, 90, 20, 22, 110, 330, 660, 924, 924, 660, 330, 110, 22, 24, 132, 440, 990, 1584, 1848
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    [2*Binomial(n, k): k in [1..n-1], n in [1..12]]; // G. C. Greubel, Jul 13 2024
    
  • Mathematica
    Table[2*Binomial[n,k], {n,13}, {k,n-1}]//Flatten (* G. C. Greubel, Jul 13 2024 *)
  • SageMath
    flatten([[2*binomial(n,k) for k in range(1,n)] for n in range(2,14)]) # G. C. Greubel, Jul 13 2024

Extensions

More terms from Donald Manchester, Jr. (s1199170(AT)cedarnet.cedarville.edu)

A028328 Distinct elements in the even-Pascal triangle A028326.

Original entry on oeis.org

2, 4, 6, 8, 12, 10, 20, 30, 40, 14, 42, 70, 16, 56, 112, 140, 18, 72, 168, 252, 90, 240, 420, 504, 22, 110, 330, 660, 924, 24, 132, 440, 990, 1584, 1848, 26, 156, 572, 1430, 2574, 3432, 28, 182, 728, 2002, 4004, 6006, 6864, 210, 910, 2730, 10010, 12870, 32
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    DeleteDuplicates[Table[2*Binomial[n,k], {n,0,30}, {k,0,n}]//Flatten] (* G. C. Greubel, Jul 13 2024 *)
  • SageMath
    A028326=flatten([[2*binomial(n,k) for k in range(n+1)] for n in range(31)])
    def a(seq): # order preserving
        nd = [] # no duplicates
        [nd.append(i) for i in seq if not nd.count(i) and i%2==0]
        return nd
    a(A028326) # A028328 # G. C. Greubel, Jul 13 2024

Extensions

More terms from James Sellers, Dec 08 1999

A028330 Elements to the right of the central elements of the even-Pascal triangle A028326.

Original entry on oeis.org

2, 2, 6, 2, 8, 2, 20, 10, 2, 30, 12, 2, 70, 42, 14, 2, 112, 56, 16, 2, 252, 168, 72, 18, 2, 420, 240, 90, 20, 2, 924, 660, 330, 110, 22, 2, 1584, 990, 440, 132, 24, 2, 3432, 2574, 1430, 572, 156, 26, 2, 6006, 4004, 2002, 728, 182, 28, 2, 12870, 10010, 6006, 2730
Offset: 0

Views

Author

Keywords

Examples

			This sequence represents the following portion of A028330(n,k), with x being the elements of A028329(n):
  x;
  .,  2;
  .,  x,  2;
  .,  .,  6,  2;
  .,  .,  x,  8,  2;
  .,  .,  ., 20, 10,   2;
  .,  .,  .,  x, 30,  12,   2;
  .,  .,  .,  ., 70,  42,  14,    2;
  .,  .,  .,  .,  x, 112,  56,   16,   2;
  .,  .,  .,  .,  ., 252, 168,   72,  18,   2;
  .,  .,  .,  .,  .,   x, 420,  240,  90,  20,   2;
  .,  .,  .,  .,  .,   ., 924,  660, 330, 110,  22,  2;
  .,  .,  .,  .,  .,   .,   x, 1584, 990, 440, 132, 24, 2;
As an irregular triangle:
    2;
    2;
    6,   2;
    8,   2;
   20,  10,   2;
   30,  12,   2;
   70,  42,  14,   2;
  112,  56,  16,   2;
  252, 168,  72,  18,  2;
  420, 240,  90,  20,  2;
  924, 660, 330, 110, 22,  2;
		

Crossrefs

Programs

  • Magma
    [[2*Binomial(n,k): k in [Floor((n+2)/2)..n]]: n in [1..12]]; // G. C. Greubel, Jul 14 2024
    
  • Mathematica
    Table[2*Binomial[n+1, k+1 +Floor[(n+1)/2]], {n,0,12}, {k,0,Floor[n/2] }]//Flatten (* G. C. Greubel, Jul 14 2024 *)
  • SageMath
    def A028326(n,k): return 2*binomial(n, k)
    flatten([[A028326(n,k) for k in range(((n+2)//2), n+1)] for n in range(1,21)]) # G. C. Greubel, Jul 14 2024

Formula

a(n) = 2 * A014413(n). - Sean A. Irvine, Dec 29 2019
From G. C. Greubel, Jul 14 2024: (Start)
T(n, k) = 2*binomial(n+1, k+1 + floor((n+1)/2)) for n >= 0, 0 <= k <= floor(n/2).
Sum_{k=0..floor(n/2)} T(n, k) = A202736(n+1) = 2*A058622(n+1).
Sum_{k=0..floor(n/2)} (-1)^k*T(n, k) = 2*A001405(n) = A063886(n+1). (End)

Extensions

More terms from James Sellers

A028331 Elements to the right of the central elements of the even-Pascal triangle A028326 that are not 2.

Original entry on oeis.org

6, 8, 20, 10, 30, 12, 70, 42, 14, 112, 56, 16, 252, 168, 72, 18, 420, 240, 90, 20, 924, 660, 330, 110, 22, 1584, 990, 440, 132, 24, 3432, 2574, 1430, 572, 156, 26, 6006, 4004, 2002, 728, 182, 28, 12870, 10010, 6006, 2730, 910, 210, 30, 22880, 16016
Offset: 0

Views

Author

Keywords

Examples

			This sequence represents the following portion of A028330(n,k), with x being the elements of A028329(n):
  x;
  .,  .;
  .,  x,  .;
  .,  .,  6,  .;
  .,  .,  x,  8,  .;
  .,  .,  ., 20, 10,   .;
  .,  .,  .,  x, 30,  12,   .;
  .,  .,  .,  ., 70,  42,  14,    .;
  .,  .,  .,  .,  x, 112,  56,   16,   .;
  .,  .,  .,  .,  ., 252, 168,   72,  18,   .;
  .,  .,  .,  .,  .,   x, 420,  240,  90,  20,   .;
  .,  .,  .,  .,  .,   ., 924,  660, 330, 110,  22,  .;
  .,  .,  .,  .,  .,   .,   x, 1584, 990, 440, 132, 24, .;
As an irregular triangle:
    6;
    8;
   20,  10;
   30,  12;
   70,  42,  14;
  112,  56,  16;
  252, 168,  72,  18;
  420, 240,  90,  20;
  924, 660, 330, 110, 22;
		

Crossrefs

Programs

  • Magma
    [2*Binomial(n+3,k): k in [Floor((n+5)/2)..n+2], n in [0..12]]; // G. C. Greubel, Jul 14 2024
    
  • Mathematica
    Table[2*Binomial[n+3, k+2 +Floor[(n+1)/2]], {n,0,12}, {k,0,Floor[n/2] }]//Flatten (* G. C. Greubel, Jul 14 2024 *)
  • SageMath
    def A028326(n,k): return 2*binomial(n, k)
    flatten([[A028326(n+1,k) for k in range(((n+3)//2), n+1)] for n in range(21)]) # G. C. Greubel, Jul 14 2024

Formula

From G. C. Greubel, Jul 14 2024: (Start)
T(n, k) = 2*binomial(n+3, k+2 + floor((n+1)/2)).
Sum_{k=0..floor(n/2)} T(n, k) = A272514(n+3).
Sum_{k=0..n} (-1)^k*T(2*n, k) = 2*A286033(n+2).
Sum_{k=0..n} (-1)^k*T(2*n+1, k) = binomial(2*n+4, n+2) + 2*(-1)^n.
(End)

Extensions

More terms from James Sellers

A028332 Distinct elements to the right of the central elements of the even-Pascal triangle A028326.

Original entry on oeis.org

2, 6, 8, 20, 10, 30, 12, 70, 42, 14, 112, 56, 16, 252, 168, 72, 18, 420, 240, 90, 924, 660, 330, 110, 22, 1584, 990, 440, 132, 24, 3432, 2574, 1430, 572, 156, 26, 6006, 4004, 2002, 728, 182, 28, 12870, 10010, 2730, 910, 210, 22880, 16016, 8736, 3640
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    DeleteDuplicates[Table[2*Binomial[n+1, k+1 +Floor[(n+1)/2]], {n,0,30}, {k,0,Floor[n/2]}]//Flatten] (* G. C. Greubel, Jul 14 2024 *)
  • SageMath
    A028330=flatten([[2*binomial(n+1,k+1+((n+1)//2)) for k in range(1+(n//2))] for n in range(31)])
    def a(seq): # order preserving
        nd = [] # no duplicates
        [nd.append(i) for i in seq if not nd.count(i) and i%2==0]
        return nd
    a(A028330) # A028332 # G. C. Greubel, Jul 14 2024

Extensions

More terms from Asher Auel
Duplicated 20 removed by Sean A. Irvine, Dec 29 2019

A000165 Double factorial of even numbers: (2n)!! = 2^n*n!.

Original entry on oeis.org

1, 2, 8, 48, 384, 3840, 46080, 645120, 10321920, 185794560, 3715891200, 81749606400, 1961990553600, 51011754393600, 1428329123020800, 42849873690624000, 1371195958099968000, 46620662575398912000, 1678343852714360832000, 63777066403145711616000
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the size of the automorphism group of the graph (edge graph) of the n-dimensional hypercube and also of the geometric automorphism group of the hypercube (the two groups are isomorphic). This group is an extension of an elementary Abelian group (C_2)^n by S_n. (C_2 is the cyclic group with two elements and S_n is the symmetric group.) - Avi Peretz (njk(AT)netvision.net.il), Feb 21 2001
Then a(n) appears in the power series: sqrt(1+sin(y)) = Sum_{n>=0} (-1)^floor(n/2)*y^(n)/a(n) and sqrt((1+cos(y))/2) = Sum_{n>=0} (-1)^n*y^(2n)/a(2n). - Benoit Cloitre, Feb 02 2002
Appears to be the BinomialMean transform of A001907. See A075271. - John W. Layman, Sep 28 2002
Number of n X n monomial matrices with entries 0, +-1.
Also number of linear signed orders.
Define a "downgrade" to be the permutation d which places the items of a permutation p in descending order. This note concerns those permutations that are equal to their double-downgrades. The number of permutations of order 2n having this property are equinumerous with those of order 2n+1. a(n) = number of double-downgrading permutations of order 2n and 2n+1. - Eugene McDonnell (eemcd(AT)mac.com), Oct 27 2003
a(n) = (Integral_{x=0..Pi/2} cos(x)^(2*n+1) dx) where the denominators are b(n) = (2*n)!/(n!*2^n). - Al Hakanson (hawkuu(AT)excite.com), Mar 02 2004
1 + (1/2)x - (1/8)x^2 - (1/48)x^3 + (1/384)x^4 + ... = sqrt(1+sin(x)).
a(n)*(-1)^n = coefficient of the leading term of the (n+1)-th derivative of arctan(x), see Hildebrand link. - Reinhard Zumkeller, Jan 14 2006
a(n) is the Pfaffian of the skew-symmetric 2n X 2n matrix whose (i,j) entry is j for iDavid Callan, Sep 25 2006
a(n) is the number of increasing plane trees with n+1 edges. (In a plane tree, each subtree of the root is an ordered tree but the subtrees of the root may be cyclically rotated.) Increasing means the vertices are labeled 0,1,2,...,n+1 and each child has a greater label than its parent. Cf. A001147 for increasing ordered trees, A000142 for increasing unordered trees and A000111 for increasing 0-1-2 trees. - David Callan, Dec 22 2006
Hamed Hatami and Pooya Hatami prove that this is an upper bound on the cardinality of any minimal dominating set in C_{2n+1}^n, the Cartesian product of n copies of the cycle of size 2n+1, where 2n+1 is a prime. - Jonathan Vos Post, Jan 03 2007
This sequence and (1,-2,0,0,0,0,...) form a reciprocal pair under the list partition transform and associated operations described in A133314. - Tom Copeland, Oct 29 2007
a(n) = number of permutations of the multiset {1,1,2,2,...,n,n,n+1,n+1} such that between the two occurrences of i, there is exactly one entry >i, for i=1,2,...,n. Example: a(2) = 8 counts 121323, 131232, 213123, 231213, 232131, 312132, 321312, 323121. Proof: There is always exactly one entry between the two 1s (when n>=1). Given a permutation p in A(n) (counted by a(n)), record the position i of the first 1, then delete both 1s and subtract 1 from every entry to get a permutation q in A(n-1). The mapping p -> (i,q) is a bijection from A(n) to the Cartesian product [1,2n] X A(n-1). - David Callan, Nov 29 2007
Row sums of A028338. - Paul Barry, Feb 07 2009
a(n) is the number of ways to seat n married couples in a row so that everyone is next to their spouse. Compare A007060. - Geoffrey Critzer, Mar 29 2009
From Gary W. Adamson, Apr 21 2009: (Start)
Equals (-1)^n * (1, 1, 2, 8, 48, ...) dot (1, -3, 5, -7, 9, ...).
Example: a(4) = 384 = (1, 1, 2, 8, 48) dot (1, -3, 5, -7, 9) = (1, -3, 10, -56, 432). (End)
exp(x/2) = Sum_{n>=0} x^n/a(n). - Jaume Oliver Lafont, Sep 07 2009
Assuming n starts at 0, a(n) appears to be the number of Gray codes on n bits. It certainly is the number of Gray codes on n bits isomorphic to the canonical one. Proof: There are 2^n different starting positions for each code. Also, each code has a particular pattern of bit positions that are flipped (for instance, 1 2 1 3 1 2 1 for n=3), and these bit position patterns can be permuted in n! ways. - D. J. Schreffler (ds1404(AT)txstate.edu), Jul 18 2010
E.g.f. of 0,1,2,8,... is x/(1-2x/(2-2x/(3-8x/(4-8x/(5-18x/(6-18x/(7-... (continued fraction). - Paul Barry, Jan 17 2011
Number of increasing 2-colored trees with choice of two colors for each edge. In general, if we replace 2 with k we get the number of increasing k-colored trees. For example, for k=3 we get the triple factorial numbers. - Wenjin Woan, May 31 2011
a(n) = row sums of triangle A193229. - Gary W. Adamson, Jul 18 2011
Also the number of permutations of 2n (or of 2n+1) that are equal to their reverse-complements. (See the Egge reference.) Note that the double-downgrade described in the preceding comment (McDonnell) is equivalent to the reverse-complement. - Justin M. Troyka, Aug 11 2011
The e.g.f. can be used to form a generator, [1/(1-2x)] d/dx, for A000108, so a(n) can be applied to A145271 to generate the Catalan numbers. - Tom Copeland, Oct 01 2011
The e.g.f. of 1/a(n) is BesselI(0,sqrt(2*x)). See Abramowitz-Stegun (reference and link under A008277), p. 375, 9.6.10. - Wolfdieter Lang, Jan 09 2012
a(n) = order of the largest imprimitive group of degree 2n with n systems of imprimitivity (see [Miller], p. 203). - L. Edson Jeffery, Feb 05 2012
Row sums of triangle A208057. - Gary W. Adamson, Feb 22 2012
a(n) is the number of ways to designate a subset of elements in each n-permutation. a(n) = A000142(n) + A001563(n) + A001804(n) + A001805(n) + A001806(n) + A001807(n) + A035038(n) * n!. - Geoffrey Critzer, Nov 08 2012
For n>1, a(n) is the order of the Coxeter groups (also called Weyl groups) of types B_n and C_n. - Tom Edgar, Nov 05 2013
For m>0, k*a(m-1) is the m-th cumulant of the chi-squared probability distribution for k degrees of freedom. - Stanislav Sykora, Jun 27 2014
a(n) with 0 prepended is the binomial transform of A120765. - Vladimir Reshetnikov, Oct 28 2015
Exponential self-convolution of A001147. - Vladimir Reshetnikov, Oct 08 2016
Also the order of the automorphism group of the n-ladder rung graph. - Eric W. Weisstein, Jul 22 2017
a(n) is the order of the group O_n(Z) = {A in M_n(Z): A*A^T = I_n}, the group of n X n orthogonal matrices over the integers. - Jianing Song, Mar 29 2021
a(n) is the number of ways to tile a (3n,3n)-benzel or a (3n+1,3n+2)-benzel using left stones and two kinds of bones; see Defant et al., below. - James Propp, Jul 22 2023
a(n) is the number of labeled histories for a labeled topology with the modified lodgepole shape and n+1 cherry nodes. - Noah A Rosenberg, Jan 16 2025

Examples

			The following permutations and their reversals are all of the permutations of order 5 having the double-downgrade property:
  0 1 2 3 4
  0 3 2 1 4
  1 0 2 4 3
  1 4 2 0 3
G.f. = 1 + 2*x + 8*x^2 + 48*x^3 + 384*x^4 + 3840*x^5 + 46080*x^6 + 645120*x^7 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000142 (n!), A001147 ((2n-1)!!), A032184 (2^n*(n-1)!).
This sequence gives the row sums in A060187, and (-1)^n*a(n) the alternating row sums in A039757.
Also row sums in A028338.
Column k=2 of A329070.

Programs

  • Haskell
    a000165 n = product [2, 4 .. 2 * n]  -- Reinhard Zumkeller, Mar 28 2015
    
  • Magma
    [2^n*Factorial(n): n in [0..35]]; // Vincenzo Librandi, Apr 22 2011
    
  • Magma
    I:=[2,8]; [1] cat [n le 2 select I[n]  else (3*n-1)*Self(n-1)-2*(n-1)^2*Self(n-2): n in [1..35] ]; // Vincenzo Librandi, Feb 19 2015
    
  • Maple
    A000165 := proc(n) option remember; if n <= 1 then 1 else n*A000165(n-2); fi; end;
    ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,b))), X = Sequence(b,card >= 0)}, labelled]: seq(combstruct[count](ZL, size=n), n=0..17); # Zerinvary Lajos, Mar 26 2008
    G(x):=(1-2*x)^(-1): f[0]:=G(x): for n from 1 to 29 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..17); # Zerinvary Lajos, Apr 03 2009
    A000165 := proc(n) doublefactorial(2*n) ; end proc; seq(A000165(n),n=0..10) ; # R. J. Mathar, Oct 20 2009
  • Mathematica
    Table[(2 n)!!, {n, 30}] (* Vladimir Joseph Stephan Orlovsky, Dec 13 2008 *)
    (2 Range[0, 30])!! (* Harvey P. Dale, Jan 23 2015 *)
    RecurrenceTable[{a[n] == 2 n*a[n-1], a[0] == 1}, a, {n,0,30}] (* Ray Chandler, Jul 30 2015 *)
  • PARI
    a(n)=n!<Charles R Greathouse IV, Feb 11 2011
    
  • PARI
    {a(n) = prod( k=1, n, 2*k)}; /* Michael Somos, Jan 04 2013 */
    
  • Python
    from math import factorial
    def A000165(n): return factorial(n)<Chai Wah Wu, Jan 24 2023
    
  • SageMath
    [2^n*factorial(n) for n in range(31)] # G. C. Greubel, Jul 21 2024

Formula

E.g.f.: 1/(1-2*x).
a(n) = A001044(n)/A000142(n)*A000079(n) = Product_{i=0..n-1} (2*i+2) = 2^n*Pochhammer(1,n). - Daniel Dockery (peritus(AT)gmail.com), Jun 13 2003
D-finite with recurrence a(n) = 2*n * a(n-1), n>0, a(0)=1. - Paul Barry, Aug 26 2004
This is the binomial mean transform of A001907. See Spivey and Steil (2006). - Michael Z. Spivey (mspivey(AT)ups.edu), Feb 26 2006
a(n) = Integral_{x>=0} x^n*exp(-x/2)/2 dx. - Paul Barry, Jan 28 2008
G.f.: 1/(1-2x/(1-2x/(1-4x/(1-4x/(1-6x/(1-6x/(1-.... (continued fraction). - Paul Barry, Feb 07 2009
a(n) = A006882(2*n). - R. J. Mathar, Oct 20 2009
From Gary W. Adamson, Jul 18 2011: (Start)
a(n) = upper left term in M^n, M = a production matrix (twice Pascal's triangle deleting the first "2", with the rest zeros; cf. A028326):
2, 2, 0, 0, 0, 0, ...
2, 4, 2, 0, 0, 0, ...
2, 6, 6, 2, 0, 0, ...
2, 8, 12, 8, 2, 0, ...
2, 10, 20, 20, 10, 2, ...
... (End)
From Sergei N. Gladkovskii, Apr 11 2013, May 01 2013, May 24 2013, Sep 30 2013, Oct 27 2013: (Start)
Continued fractions:
G.f.: 1 + x*(Q(0) - 1)/(x+1) where Q(k) = 1 + (2*k+2)/(1-x/(x+1/Q(k+1))).
G.f.: 1/Q(0) where Q(k) = 1 + 2*k*x - 2*x*(k+1)/Q(k+1).
G.f.: G(0)/2 where G(k) = 1 + 1/(1 - x*(2*k+2)/(x*(2*k+2) + 1/G(k+1))).
G.f.: 1/Q(0) where Q(k) = 1 - x*(4*k+2) - 4*x^2*(k+1)^2/Q(k+1).
G.f.: R(0) where R(k) = 1 - x*(2*k+2)/(x*(2*k+2)-1/(1-x*(2*k+2)/(x*(2*k+2) -1/R(k+1)))). (End)
a(n) = (2n-2)*a(n-2) + (2n-1)*a(n-1), n>1. - Ivan N. Ianakiev, Aug 06 2013
From Peter Bala, Feb 18 2015: (Start)
Recurrence equation: a(n) = (3*n - 1)*a(n-1) - 2*(n - 1)^2*a(n-2) with a(1) = 2 and a(2) = 8.
The sequence b(n) = A068102(n) also satisfies this second-order recurrence. This leads to the generalized continued fraction expansion lim_{n -> oo} b(n)/a(n) = log(2) = 1/(2 - 2/(5 - 8/(8 - 18/(11 - ... - 2*(n - 1)^2/((3*n - 1) - ... ))))). (End)
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = sqrt(e) (A019774).
Sum_{n>=0} (-1)^n/a(n) = 1/sqrt(e) (A092605). (End)
Limit_{n->oo} a(n)^4 / (n * A134372(n)) = Pi. - Daniel Suteu, Apr 09 2022
a(n) = 1/([x^n] hypergeom([1], [1], x/2)). - Peter Luschny, Sep 13 2024
a(n) = Sum_{k=0..n} k!*(n-k)!*binomial(n,k)^2. - Ridouane Oudra, Jul 13 2025

A028329 Twice central binomial coefficients.

Original entry on oeis.org

2, 4, 12, 40, 140, 504, 1848, 6864, 25740, 97240, 369512, 1410864, 5408312, 20801200, 80233200, 310235040, 1202160780, 4667212440, 18150270600, 70690527600, 275693057640, 1076515748880, 4208197927440, 16466861455200, 64495207366200, 252821212875504, 991837065896208
Offset: 0

Views

Author

Keywords

Comments

Central elements in the even-Pascal triangle A028326.
If Y is a 3-subset of an 2n-set X then, for n>=3, a(n-1) is the number of (n+1)-subsets of X having at least two elements in common with Y. - Milan Janjic, Dec 16 2007
a(n) denotes the number of ways one can reach the (n,n) point in an n X n grid via the point (n-1, n-1) starting from (0,0) when moving right and up is allowed [From Avik Roy (avik_3.1416(AT)yahoo.co.in), Jan 29 2009]
It appears that a(n-1) is also the number of quivers in the mutation class of twisted types BD_n and CD_n for n >= 3. - Christian Stump, Nov 03 2010
This is the case m = n+1 in the Catalan's formula (2m)!*(2n)!/(m!*(m+n)!*n!) - see Umberto Scarpis in References. - Bruno Berselli, Apr 27 2012
From Ran Pan, Feb 01 2016: (Start)
a(n) is the number of North-East paths from (0,0) to (n+1,n+1) that bounce off the diagonal y = x an even number of times. Details can be found in Section 4.2 in Pan and Remmel's link.
a(n) is the number of North-East paths from (0,0) to (n+1,n+1) that cross the diagonal y = x an even number of times. Details can be found in Section 4.3 in Pan and Remmel's link. (End)

References

  • Umberto Scarpis, Sui numeri primi e sui problemi dell'analisi indeterminata in Questioni riguardanti le matematiche elementari, Nicola Zanichelli Editore (1924-1927, third Edition), page 11.

Crossrefs

Bisection of A047073, A063886.
First differences of A054113.

Programs

  • Magma
    [2*(n+1)*Catalan(n): n in [0..30]]; // G. C. Greubel, Jul 13 2024
    
  • Maple
    seq(add(binomial(2*n,n),k=1..2),n=0..23); # Zerinvary Lajos, Dec 14 2007
  • Mathematica
    Table[2Binomial[2n,n],{n,0,30}] (* Harvey P. Dale, Aug 08 2011 *)
  • PARI
    a(n)=2*binomial(2*n,n)
    
  • SageMath
    [2*binomial(2*n,n) for n in range(31)] # G. C. Greubel, Jul 13 2024

Formula

G.f.: 2/sqrt(1 - 4*x).
a(n) = 2*A000984(n).
a(n) = 2 * binomial(2*n, n).
a(n) = A100320(n) = A095660(2*n,n) for n > 0. - Reinhard Zumkeller, Apr 08 2012
G.f.: G(0), where G(k)= 1 + 1/(1 - 2*x*(2*k + 1)/(2*x*(2*k + 1) + (k + 1)/ G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 07 2013
a(n) = binomial(2*n+2, n+1) - A162551(n). - Ran Pan, Feb 01 2016
D-finite with recurrence: n*a(n) + 2*(-2*n+1)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
E.g.f.: 2*exp(2*x)*BesselI(0, 2*x). - Stefano Spezia, May 11 2024

Extensions

Edited by Michael Somos, Sep 13 2003

A095660 Pascal (1,3) triangle.

Original entry on oeis.org

3, 1, 3, 1, 4, 3, 1, 5, 7, 3, 1, 6, 12, 10, 3, 1, 7, 18, 22, 13, 3, 1, 8, 25, 40, 35, 16, 3, 1, 9, 33, 65, 75, 51, 19, 3, 1, 10, 42, 98, 140, 126, 70, 22, 3, 1, 11, 52, 140, 238, 266, 196, 92, 25, 3, 1, 12, 63, 192, 378, 504, 462, 288, 117, 28, 3, 1, 13, 75, 255, 570, 882, 966, 750, 405, 145, 31, 3
Offset: 0

Views

Author

Wolfdieter Lang, May 21 2004

Keywords

Comments

This is the third member, q=3, in the family of (1,q) Pascal triangles: A007318 (Pascal (q=1)), A029635 (q=2) (but with T(0,0)=2, not 1).
This is an example of a Riordan triangle (see A053121 for a comment and the 1991 Shapiro et al. reference on the Riordan group) with o.g.f. of column no. m of the type g(x)*(x*f(x))^m with f(0)=1. Therefore the o.g.f. for the row polynomials p(n,x) = Sum_{m=0..n} T(n,m)*x^m is G(z,x) = g(z)/(1-x*z*f(z)). Here: g(x) = (3-2*x)/(1-x), f(x) = 1/(1-x), hence G(z,x) = (3-2*z)/(1-(1+x)*z).
The SW-NE diagonals give Sum_{k=0..ceiling((n-1)/2)} T(n-1-k,k) = A000285(n-2), n>=2, with n=1 value 3. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs.
Central terms: T(2*n,n) = A028329(n) = A100320(n) for n > 0, A028329 are the central terms of triangle A028326. - Reinhard Zumkeller, Apr 08 2012
Let P be Pascal's triangle, A007318 and R the Riordan array, A097805. Then Pascal triangle (1,q) = ((q-1) * R) + P. Example: Pascal triangle (1,3) = (2 * R) + P. - Gary W. Adamson, Sep 12 2015

Examples

			Triangle starts:
  3;
  1,  3;
  1,  4,  3;
  1,  5,  7,   3;
  1,  6, 12,  10,   3;
  1,  7, 18,  22,  13,   3;
  1,  8, 25,  40,  35,  16,   3;
  1,  9, 33,  65,  75,  51,  19,   3;
  1, 10, 42,  98, 140, 126,  70,  22,   3;
  1, 11, 52, 140, 238, 266, 196,  92,  25,   3;
  1, 12, 63, 192, 378, 504, 462, 288, 117,  28,  3;
  1, 13, 75, 255, 570, 882, 966, 750, 405, 145, 31, 3;
		

Crossrefs

Row sums: A000079(n+1), n>=1, 3 if n=0. Alternating row sums are [3, -2, followed by 0's].
Column sequences (without leading zeros) give for m=1..9 with n>=0: A000027(n+3), A055998(n+1), A006503(n+1), A095661, A000574, A095662, A095663, A095664, A095665.
Cf. A097805.

Programs

  • Haskell
    a095660 n k = a095660_tabl !! n !! k
    a095660_row n = a095660_tabl !! n
    a095660_tabl = [3] : iterate
       (\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [1,3]
    -- Reinhard Zumkeller, Apr 08 2012
    
  • Magma
    A095660:= func< n,k | n eq 0 select 3 else (1+2*k/n)*Binomial(n,k) >;
    [A095660(n,k): k in [0..n], n in [1..12]]; // G. C. Greubel, May 02 2021
    
  • Maple
    T(n,k):=piecewise(n=0,3,0Mircea Merca, Apr 08 2012
  • Mathematica
    {3}~Join~Table[(1 + 2 k/n) Binomial[n, k], {n, 11}, {k, 0, n}] // Flatten (* Michael De Vlieger, Sep 14 2015 *)
  • Sage
    def A095660(n,k): return 3 if n==0 else (1+2*k/n)*binomial(n,k)
    flatten([[A095660(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 02 2021

Formula

Recursion: T(n, m)=0 if m>n, T(0, 0)= 3; T(n, 0)=1 if n>=1; T(n, m) = T(n-1, m) + T(n-1, m-1).
G.f. column m (without leading zeros): (3-2*x)/(1-x)^(m+1), m>=0.
T(n,k) = (1+2*k/n) * binomial(n,k), for n>0. - Mircea Merca, Apr 08 2012
Closed-form formula for arbitrary left and right borders of Pascal like triangle see A228196. - Boris Putievskiy, Aug 19 2013

A134058 Triangle T(n, k) = 2*binomial(n, k) with T(0, 0) = 1, read by rows.

Original entry on oeis.org

1, 2, 2, 2, 4, 2, 2, 6, 6, 2, 2, 8, 12, 8, 2, 2, 10, 20, 20, 10, 2, 2, 12, 30, 40, 30, 12, 2, 2, 14, 42, 70, 70, 42, 14, 2, 2, 16, 56, 112, 140, 112, 56, 16, 2, 2, 18, 72, 168, 252, 252, 168, 72, 18, 2
Offset: 0

Views

Author

Gary W. Adamson, Oct 05 2007

Keywords

Comments

Triangle T(n,k), 0 <= k <= n, read by rows, given by [2, -1, 0, 0, 0, 0, 0, ...] DELTA [2, -1, 0, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Oct 07 2007
Equals A028326 for all but the first term. - R. J. Mathar, Jun 08 2008
Warning: the row sums do not give A046055. - N. J. A. Sloane, Jul 08 2009

Examples

			First few rows of the triangle:
  1
  2,  2;
  2,  4,  2;
  2,  6,  6,  2;
  2,  8, 12,  8,  2;
  2, 10, 20, 20, 10,  2;
  ...
		

Crossrefs

Programs

  • Magma
    A134058:= func< n,k | n eq 0 select 1 else 2*Binomial(n,k) >;
    [A134058(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 26 2021
    
  • Mathematica
    T[n_, k_]:= SeriesCoefficient[(1+x+y)/(1-x-y), {x, 0, n-k}, {y, 0, k}];
    Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* Jean-François Alcover, Apr 09 2015, after Vladimir Kruchinin *)
    Table[2*Binomial[n,k] -Boole[n==0], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 26 2021 *)
  • Sage
    def A134058(n,k): return 2*binomial(n,k) - bool(n==0)
    flatten([[A134058(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 26 2021

Formula

Double Pascal's triangle and replace leftmost column with (1,2,2,2,...).
M*A007318, where M = an infinite lower triangular matrix with (1,2,2,2,...) in the main diagonal and the rest zeros.
Sum_{k=0..n} T(n,k) = A151821(n+1). - Philippe Deléham, Sep 17 2009
G.f.: (1+x+y)/(1-x-y). - Vladimir Kruchinin, Apr 09 2015
T(n, k) = 2*binomial(n, k) - [n=0]. - G. C. Greubel, Apr 26 2021
E.g.f.: 2*exp(x*(1+y)) - 1. - Stefano Spezia, Apr 03 2024

Extensions

Title changed by G. C. Greubel, Apr 26 2021

A124927 Triangle read by rows: T(n,0)=1, T(n,k)=2*binomial(n,k) if k>0 (0<=k<=n).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 1, 6, 6, 2, 1, 8, 12, 8, 2, 1, 10, 20, 20, 10, 2, 1, 12, 30, 40, 30, 12, 2, 1, 14, 42, 70, 70, 42, 14, 2, 1, 16, 56, 112, 140, 112, 56, 16, 2, 1, 18, 72, 168, 252, 252, 168, 72, 18, 2, 1, 20, 90, 240, 420, 504, 420, 240, 90, 20, 2, 1, 22, 110, 330, 660, 924, 924, 660, 330, 110, 22, 2
Offset: 0

Views

Author

Gary W. Adamson, Nov 12 2006

Keywords

Comments

Pascal triangle with all entries doubled except for the first entry in each row. A028326 with first column replaced by 1's. Row sums are 2^(n+1)-1.
From Paul Barry, Sep 19 2008: (Start)
Reversal of A129994. Diagonal sums are A001595. T(2n,n) is A100320.
Binomial transform of matrix with 1,2,2,2,... on main diagonal, zero elsewhere. (End)
This sequence is jointly generated with A210042 as an array of coefficients of polynomials v(n,x): initially, u(1,x)=v(1,x)=1; for n>1, u(n,x)=u(n-1,x)+v(n-1,x) +1 and v(n,x)=x*u(n-1,x)+x*v(n-1,x). See the Mathematica section. - Clark Kimberling, Mar 09 2012
Subtriangle of the triangle given by (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 25 2012

Examples

			Triangle starts:
  1;
  1,  2;
  1,  4,  2;
  1,  6,  6,  2;
  1,  8, 12,  8,  2;
  1, 10, 20, 20, 10, 2;
(1, 0, 0, 1, 0, 0, ...) DELTA (0, 2, -1, 0, 0, ...) begins:
  1;
  1,  0;
  1,  2,  0;
  1,  4,  2,  0;
  1,  6,  6,  2,  0;
  1,  8, 12,  8,  2, 0;
  1, 10, 20, 20, 10, 2, 0. - _Philippe Deléham_, Mar 25 2012
		

Crossrefs

Cf. A000225.
Cf. A074909.

Programs

  • Haskell
    a124927 n k = a124927_tabl !! n !! k
    a124927_row n = a124927_tabl !! n
    a124927_tabl = iterate
       (\row -> zipWith (+) ([0] ++ reverse row) (row ++ [1])) [1]
    -- Reinhard Zumkeller, Mar 04 2012
    
  • Magma
    [k eq 0 select 1 else 2*Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 10 2019
    
  • Maple
    T:=proc(n,k) if k=0 then 1 else 2*binomial(n,k) fi end: for n from 0 to 12 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form
  • Mathematica
    (* First program *)
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
    v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A210042 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A124927 *) (* Clark Kimberling, Mar 17 2012 *)
    (* Second program *)
    Table[If[k==0, 1, 2*Binomial[n, k]], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 10 2019 *)
  • PARI
    T(n,k) = if(k==0,1, 2*binomial(n,k)); \\ G. C. Greubel, Jul 10 2019
    
  • Sage
    def T(n, k):
        if (k==0): return 1
        else: return 2*binomial(n,k)
    [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 10 2019

Formula

T(n,0) = 1; for n>0: T(n,n) = 2, T(n,k) = T(n-1,k) + T(n-1,n-k), 1Reinhard Zumkeller, Mar 04 2012
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1), T(0,0) = T(1,0) = 1, T(1,1) = 2, T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 25 2012
G.f.: (1-x+x*y)/((-1+x)*(x*y+x-1)). - R. J. Mathar, Aug 11 2015

Extensions

Edited by N. J. A. Sloane, Nov 24 2006
Showing 1-10 of 14 results. Next