A063886
Number of n-step walks on a line starting from the origin but not returning to it.
Original entry on oeis.org
1, 2, 2, 4, 6, 12, 20, 40, 70, 140, 252, 504, 924, 1848, 3432, 6864, 12870, 25740, 48620, 97240, 184756, 369512, 705432, 1410864, 2704156, 5408312, 10400600, 20801200, 40116600, 80233200, 155117520, 310235040, 601080390, 1202160780, 2333606220, 4667212440
Offset: 0
a(4) = 6 because there are six length four walks that do not return to the origin: {-1, -2, -3, -4}, {-1, -2, -3, -2}, {-1, -2, -1, -2}, {1, 2, 1, 2}, {1, 2, 3, 2}, {1, 2, 3, 4}. There are also six such walks that return exactly one time: {-1, -2, -1, 0}, {-1, 0, -1, -2}, {-1, 0, 1, 2}, {1, 0, -1, -2}, {1, 0, 1, 2}, {1, 2, 1, 0}. - _Geoffrey Critzer_, Jan 24 2010
The a(5) = 12 subsets in which the even elements appear as often at even positions as at odd positions: {}, {1}, {3}, {5}, {1,3}, {1,5}, {2,4}, {3,5}, {1,2,4}, {1,3,5}, {2,4,5}, {1,2,4,5}. - _Gus Wiseman_, Mar 17 2018
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Paul Barry, A Note on Riordan Arrays with Catalan Halves, arXiv:1912.01124 [math.CO], 2019.
- Emeric Deutsch, Problem 11424, The American Mathematical Monthly, Vol. 116, No. 3 (March 2009), p. 277.
- D. Perrin, A conjecture on rational sequences, pp. 267-274 of R. M. Capocelli, ed., Sequences, Springer-Verlag, NY 1990.
Apart from initial terms, same as
A182027.
Cf.
A000108,
A000246,
A000712,
A000984,
A001405,
A001700,
A002420,
A006232,
A007877,
A026010,
A028329,
A045931,
A047073,
A089849,
A097613,
A106180,
A120617,
A130777,
A130780,
A138364,
A164584,
A171966,
A239241,
A300787,
A300788,
A300789.
-
[1] cat [2*Binomial(n-1, Floor((n-1)/2)): n in [1..40]]; // G. C. Greubel, Jun 07 2023
-
seq(seq(binomial(2*j,j)*i, i=1..2),j=0..16); # Zerinvary Lajos, Apr 28 2007
# second Maple program:
a:= proc(n) option remember; `if`(n<2, n+1,
4*a(n-2) +2*(a(n-1) -4*a(n-2))/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Feb 10 2014
# third program:
A063886 := series(BesselI(0, 2*x)*(1 + x*2 + x*Pi*StruveL(1, 2*x)) - Pi*x*BesselI(1, 2*x)*StruveL(0, 2*x), x = 0, 34): seq(n!*coeff(A063886, x, n), n = 0 .. 33); # Mélika Tebni, Jun 17 2024
-
Table[Length[Select[Map[Accumulate, Strings[{-1, 1}, n]], Count[ #, 0] == 0 &]], {n, 0, 20}] (* Geoffrey Critzer, Jan 24 2010 *)
CoefficientList[Series[Sqrt[(1+2x)/(1-2x)],{x,0,40}],x] (* Harvey P. Dale, Apr 28 2016 *)
-
a(n)=(n==0)+2*binomial(n-1,(n-1)\2)
-
a(n) = 2^n*prod(k=0,n-1,(k/n+1/n)^((-1)^k)); \\ Michel Marcus, Dec 03 2013
-
from math import ceil
from sympy import binomial
def a(n):
if n==0: return 1
return 2*binomial(n-1,(n-1)//2)
print([a(n) for n in range(18)])
# David Nacin, Feb 29 2012
-
[2*binomial(n-1, (n-1)//2) + int(n==0) for n in range(41)] # G. C. Greubel, Jun 07 2023
A095660
Pascal (1,3) triangle.
Original entry on oeis.org
3, 1, 3, 1, 4, 3, 1, 5, 7, 3, 1, 6, 12, 10, 3, 1, 7, 18, 22, 13, 3, 1, 8, 25, 40, 35, 16, 3, 1, 9, 33, 65, 75, 51, 19, 3, 1, 10, 42, 98, 140, 126, 70, 22, 3, 1, 11, 52, 140, 238, 266, 196, 92, 25, 3, 1, 12, 63, 192, 378, 504, 462, 288, 117, 28, 3, 1, 13, 75, 255, 570, 882, 966, 750, 405, 145, 31, 3
Offset: 0
Triangle starts:
3;
1, 3;
1, 4, 3;
1, 5, 7, 3;
1, 6, 12, 10, 3;
1, 7, 18, 22, 13, 3;
1, 8, 25, 40, 35, 16, 3;
1, 9, 33, 65, 75, 51, 19, 3;
1, 10, 42, 98, 140, 126, 70, 22, 3;
1, 11, 52, 140, 238, 266, 196, 92, 25, 3;
1, 12, 63, 192, 378, 504, 462, 288, 117, 28, 3;
1, 13, 75, 255, 570, 882, 966, 750, 405, 145, 31, 3;
Row sums:
A000079(n+1), n>=1, 3 if n=0. Alternating row sums are [3, -2, followed by 0's].
-
a095660 n k = a095660_tabl !! n !! k
a095660_row n = a095660_tabl !! n
a095660_tabl = [3] : iterate
(\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [1,3]
-- Reinhard Zumkeller, Apr 08 2012
-
A095660:= func< n,k | n eq 0 select 3 else (1+2*k/n)*Binomial(n,k) >;
[A095660(n,k): k in [0..n], n in [1..12]]; // G. C. Greubel, May 02 2021
-
T(n,k):=piecewise(n=0,3,0Mircea Merca, Apr 08 2012
-
{3}~Join~Table[(1 + 2 k/n) Binomial[n, k], {n, 11}, {k, 0, n}] // Flatten (* Michael De Vlieger, Sep 14 2015 *)
-
def A095660(n,k): return 3 if n==0 else (1+2*k/n)*binomial(n,k)
flatten([[A095660(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 02 2021
A162551
a(n) = 2 * C(2*n,n-1).
Original entry on oeis.org
0, 2, 8, 30, 112, 420, 1584, 6006, 22880, 87516, 335920, 1293292, 4992288, 19315400, 74884320, 290845350, 1131445440, 4407922860, 17194993200, 67156001220, 262564816800, 1027583214840, 4025232800160, 15780742227900, 61915399071552
Offset: 0
- R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley 1996, page 141.
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Valentin Ovsienko, Shadow sequences of integers, from Fibonacci to Markov and back, arXiv:2111.02553 [math.CO], 2021.
- Ran Pan and Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016
- Ping Sun, Proof of two conjectures of Petkovsek and Wilf on Gessel walks, Discrete Math, 312(24) (2012), 3649-3655. MR2979494. See Th. 1.1, case 2. - _N. J. A. Sloane_, Nov 07 2012
-
a162551 n = a051601 (2 * n) n -- Reinhard Zumkeller, Aug 05 2013
-
[2*n*Catalan(n): n in [0..30]]; // Vincenzo Librandi, Jul 19 2011
-
nn=25;Drop[CoefficientList[Series[(1-2x)/(1-4x)^(1/2),{x,0,nn}],x],1] (* Geoffrey Critzer, Feb 23 2013 *)
Table[2Binomial[2n,n-1],{n,0,30}] (* Harvey P. Dale, Oct 26 2016 *)
-
a(n) = 2*binomial(2*n,n-1) \\ Charles R Greathouse IV, Oct 23 2023
A189498
T(n,k)=Number of arrangements of n+1 nonzero numbers x(i) in -k..k with the sum of floor(x(i)/x(i+1)) equal to zero.
Original entry on oeis.org
0, 2, 4, 6, 12, 0, 12, 38, 42, 12, 20, 78, 152, 136, 0, 30, 148, 462, 928, 550, 40, 42, 240, 1088, 3388, 4920, 1892, 0, 56, 380, 2128, 9394, 24806, 27508, 7384, 140, 72, 554, 3850, 22088, 85480, 182634, 152358, 26816, 0, 90, 788, 6474, 45892, 238836, 787412
Offset: 1
Some solutions for n=7 k=5
.-5...-5...-5...-5...-5...-4...-5...-5...-5...-4...-5...-5...-5...-5...-5...-5
.-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5
..3...-4....5....2....3...-4....4...-4...-3...-5....5....5....1....1....3....3
.-4....3...-4...-3....2...-3....3....5....1...-3...-4....2....4....2....1....2
.-2....2...-1...-4...-1...-5....1....4....1...-4...-2...-5....2....2...-1....5
..4....5...-3....4...-5...-2...-2....3....2...-5....2....3...-5...-4...-5...-5
..3...-2....2....2...-4....5...-4...-1....2....3....3....5...-5...-1....3...-2
..5...-1....5....1...-4...-2....3...-4...-4....4....3....5...-2...-4....3....2
Column 1 is
A028329(n/2) for even n
A189545
T(n,k)=Number of arrangements of n+1 nonzero numbers x(i) in -k..k with the sum of trunc(x(i)/x(i+1)) equal to zero.
Original entry on oeis.org
0, 4, 4, 12, 8, 0, 24, 28, 44, 12, 40, 72, 192, 152, 0, 60, 152, 544, 964, 552, 40, 84, 264, 1340, 3664, 5416, 2000, 0, 112, 432, 2520, 11276, 26804, 31280, 7628, 140, 144, 660, 4620, 26152, 97836, 204544, 173792, 28440, 0, 180, 968, 7716, 56440, 274132, 911144
Offset: 1
Some solutions for n=7 k=5
.-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-4...-5
.-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5...-5
..1...-2...-2...-1....1...-5...-3....4....3...-4....3...-3....3....1...-4....3
..4....4....2...-3...-3....2....5...-1....5....4...-2....4....5...-1....3....3
..1...-1....3....2...-2...-3...-2....5...-5....3....3...-1....4...-2....4....3
.-3...-1...-1...-1...-3....1....5....2...-2....5....5....4....5...-5....3...-4
.-4....4...-1....3...-1...-3...-3....1....5...-2...-5....5....5...-1....4....5
..5....5....4...-1...-2...-1...-3....4...-4...-5...-2....2...-2....3...-3...-2
Column 1 is
A028329(n/2) for even n
A190071
T(n,k)=Number of arrangements of n+1 nonzero numbers x(i) in -k..k with the sum of div(x(i),x(i+1)), where div(a,b)=a/b produces the integer quotient implying a nonnegative remainder, equal to zero.
Original entry on oeis.org
0, 2, 4, 6, 12, 0, 12, 36, 40, 12, 20, 76, 166, 144, 0, 30, 143, 483, 922, 550, 40, 42, 233, 1126, 3481, 5136, 1896, 0, 56, 366, 2276, 9904, 25306, 28656, 7584, 140, 72, 536, 4150, 23400, 88509, 191456, 162028, 27328, 0, 90, 760, 6946, 48491, 249119, 834717
Offset: 1
Some solutions for n=6 k=4
.-3...-4....2....1....3...-3...-4....1....2...-1...-3....2...-1....1....2...-2
.-1...-4...-4...-3...-2...-2...-2...-2...-3...-1...-1...-1...-2...-2...-3...-4
..3....2....1....2....4....1....4...-2...-2...-3....1....3...-3....3...-2...-2
.-1....2....1....4....2...-2...-3....2....4....1....2....3...-2....1...-3....1
.-1....4...-2....3...-1....3....3...-4...-1....2....3...-4....2...-2....2....3
..4....3...-1....4...-3....2....3...-4...-4....2...-4...-4...-1....3....4....2
..3...-2...-1....3...-3...-3....4....4...-3....4....3...-4....1...-3...-3...-1
Column 1 is
A028329(n/2) for even n
A028326
Twice Pascal's triangle A007318: T(n,k) = 2*C(n,k).
Original entry on oeis.org
2, 2, 2, 2, 4, 2, 2, 6, 6, 2, 2, 8, 12, 8, 2, 2, 10, 20, 20, 10, 2, 2, 12, 30, 40, 30, 12, 2, 2, 14, 42, 70, 70, 42, 14, 2, 2, 16, 56, 112, 140, 112, 56, 16, 2, 2, 18, 72, 168, 252, 252, 168, 72, 18, 2, 2, 20, 90, 240, 420, 504, 420, 240, 90, 20, 2, 2, 22, 110, 330, 660, 924, 924, 660, 330, 110, 22, 2
Offset: 0
Triangle begins:
2;
2, 2;
2, 4, 2;
2, 6, 6, 2;
2, 8, 12, 8, 2;
2, 10, 20, 20, 10, 2;
2, 12, 30, 40, 30, 12, 2;
2, 14, 42, 70, 70, 42, 14, 2;
2, 16, 56, 112, 140, 112, 56, 16, 2;
2, 18, 72, 168, 252, 252, 168, 72, 18, 2;
2, 20, 90, 240, 420, 504, 420, 240, 90, 20, 2;
2, 22, 110, 330, 660, 924, 924, 660, 330, 110, 22, 2;
2, 24, 132, 440, 990, 1584, 1848, 1584, 990, 440, 132, 24, 2;
- I. Goulden and D. Jackson, Combinatorial Enumeration, John Wiley and Sons, 1983, page 76.
-
a028326 n k = a028326_tabl !! n !! k
a028326_row n = a028326_tabl !! n
a028326_tabl = iterate
(\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [2]
-- Reinhard Zumkeller, Mar 12 2012
-
[2*Binomial(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 27 2021
-
T := proc(n, k) if k=0 then 2 elif k>n then 0 else T(n-1, k)+T(n-1, k-1) fi end:
for n from 0 to 13 do seq(T(n, k), k=0..n) od; # Zerinvary Lajos, Dec 16 2006
-
Table[2*Binomial[n, k], {n, 0, 11}, {k, 0, n}]//Flatten (* Robert G. Wilson v, Mar 05 2012 *)
-
T(n,k) = 2*binomial(n,k) \\ Charles R Greathouse IV, Feb 07 2017
-
from sympy import binomial
def T(n, k):
return 2*binomial(n, k)
for n in range(21): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Apr 29 2017
-
flatten([[2*binomial(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 27 2021
More terms from Donald Manchester, Jr. (s1199170(AT)cedarnet.cedarville.edu)
A241477
Triangle read by rows, number of orbitals classified with respect to the first zero crossing, n>=1, 1<=k<=n.
Original entry on oeis.org
1, 0, 2, 2, 2, 2, 0, 4, 0, 2, 6, 12, 4, 2, 6, 0, 12, 0, 4, 0, 4, 20, 60, 12, 12, 12, 4, 20, 0, 40, 0, 12, 0, 8, 0, 10, 70, 280, 40, 60, 36, 24, 40, 10, 70, 0, 140, 0, 40, 0, 24, 0, 20, 0, 28, 252, 1260, 140, 280, 120, 120, 120, 60, 140, 28, 252, 0, 504, 0
Offset: 1
[1], [ 1]
[2], [ 0, 2]
[3], [ 2, 2, 2]
[4], [ 0, 4, 0, 2]
[5], [ 6, 12, 4, 2, 6]
[6], [ 0, 12, 0, 4, 0, 4]
[7], [20, 60, 12, 12, 12, 4, 20]
-
A241477 := proc(n, k)
if n = 0 then 1
elif k = 0 then 0
elif irem(n, 2) = 0 and irem(k, 2) = 1 then 0
elif k = 1 then (n-1)!/iquo(n-1,2)!^2
else 2*(n-k)!*(k-2)!/iquo(k,2)/(iquo(k-2,2)!*iquo(n-k,2)!)^2
fi end:
for n from 1 to 9 do seq(A241477(n, k), k=1..n) od;
-
T[n_, k_] := Which[n == 0, 1, k == 0, 0, Mod[n, 2] == 0 && Mod[k, 2] == 1, 0, k == 1, (n-1)!/Quotient[n-1, 2]!^2, True, 2*(n-k)!*(k-2)!/Quotient[k, 2]/(Quotient[k-2, 2]!*Quotient[n-k, 2]!)^2];
Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jun 20 2018, from Maple *)
-
def A241477_row(n):
if n == 0: return [1]
Z = [0]*n; T = [0] if is_odd(n) else []
for i in (1..n//2): T.append(-1); T.append(1)
for p in Permutations(T):
i = 0; s = p[0]
while s != 0: i += 1; s += p[i];
Z[i] += 1
return Z
for n in (1..9): A241477_row(n)
A100320
A Catalan transform of (1 + 2*x)/(1 - 2*x).
Original entry on oeis.org
1, 4, 12, 40, 140, 504, 1848, 6864, 25740, 97240, 369512, 1410864, 5408312, 20801200, 80233200, 310235040, 1202160780, 4667212440, 18150270600, 70690527600, 275693057640, 1076515748880, 4208197927440, 16466861455200, 64495207366200, 252821212875504, 991837065896208
Offset: 0
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
- Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
-
a100320 n = a124927 (2 * n) n -- Reinhard Zumkeller, Mar 04 2012
-
[4*Binomial(2*n-1, n) - 3*0^n: n in [0..40]]; // G. C. Greubel, Feb 01 2023
-
a[0]= 1; a[n_]:= 2 Binomial[2 n, n];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 31 2018 *)
-
def A100320(n): return 4*binomial(2*n-1, n) - 3*0^n
[A100320(n) for n in range(41)] # G. C. Greubel, Feb 01 2023
A126966
Expansion of sqrt(1 - 4*x)/(1 - 2*x).
Original entry on oeis.org
1, 0, -2, -8, -26, -80, -244, -752, -2362, -7584, -24892, -83376, -284324, -984672, -3455144, -12259168, -43908026, -158531392, -576352364, -2107982128, -7750490636, -28629222112, -106190978264, -395347083808, -1476813394916, -5533435084480, -20790762971864, -78316232088032
Offset: 0
-
List([0..30], n-> (-1)*Sum([0..n], j-> 2^j*Binomial(2*(n-j), n-j)/(2*(n-j) -1) )); # G. C. Greubel, Jan 29 2020
-
R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( Sqrt(1-4*x)/(1-2*x) )); // G. C. Greubel, Jan 29 2020
-
a := n -> -add(2^j*binomial(2*n-2*j,n-j)/(2*n-2*j-1), j=0..n):
seq(a(n),n=0..30); # Emeric Deutsch, Mar 25 2007
# second Maple program:
CatalanNumber := n -> binomial(2*n, n)/(n+1):
a := n -> 2^n*I + CatalanNumber(n)*simplify(hypergeom([1, n + 1/2], [n + 2], 2)):
seq(a(n), n=0..26); # Peter Luschny, Aug 04 2020
# third program:
A126966 := n -> 2*binomial(2*n, n) - add(2^(n-k)*binomial(2*k,k), k=0..n):
seq(A126966(n), n = 0 .. 27); # Mélika Tebni, Mar 08 2024
-
CoefficientList[Series[Sqrt[1-4*x]/(1-2*x), {x,0,30}], x] (* G. C. Greubel, Jan 31 2017 *)
-
Vec(sqrt(1-4*x)/(1-2*x) + O(x^30)) \\ G. C. Greubel, Jan 31 2017
-
def A126966_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( sqrt(1-4*x)/(1-2*x) ).list()
A126966_list(30) # G. C. Greubel, Jan 29 2020
Showing 1-10 of 23 results.
Comments