cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028399 a(n) = 2^n - 4.

Original entry on oeis.org

0, 4, 12, 28, 60, 124, 252, 508, 1020, 2044, 4092, 8188, 16380, 32764, 65532, 131068, 262140, 524284, 1048572, 2097148, 4194300, 8388604, 16777212, 33554428, 67108860, 134217724, 268435452, 536870908, 1073741820, 2147483644, 4294967292, 8589934588, 17179869180
Offset: 2

Views

Author

Keywords

Comments

Number of permutations of [n] with 2 sequences.
Number of 2 X n binary matrices that avoid simultaneously the right angled numbered polyomino patterns (ranpp) (00;1) and (11;0). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1Sergey Kitaev, Nov 11 2004
The number of edges in the dual Edwards-Venn diagram graph with n-1 digits when n>2.
a(n) (n>=6) is the number of vertices in the molecular graph NS2[n-5], defined pictorially in the Ashrafi et al. reference (Fig. 2, where NS2[2] is shown). - Emeric Deutsch, May 16 2018
From Petros Hadjicostas, Aug 08 2019: (Start)
With regard to the comment above about a(n) being the "number of permutations of [n] with 2 sequences", we refer to Ex. 13 (pp. 260-261) of Comtet (1974), who uses the definition of a "séquence" given by André in several of his papers in the 19th century.
In the terminology of array A059427, these so-called "séquences" in permutations (defined by Comtet and André) are called "alternating runs" (or just "runs"). We discuss these so-called "séquences" below.
If b = (b_1, b_2, ..., b_n) is a permutation of [n], written in one-line notation (not in cycle notation), a "séquence" in a permutation of length l >= 2 (according to Comtet) is a maximal interval of integers {i, i+1, ..., i+l-1} for some i (where 1 <= i <= n-l+1) such that b_i < b_{i+1} < ... < b_{i+l-1} or b_i > b_{i+1} > ... > b_{i+l-1}. (The word "maximal" means that, in the first case, we have b_{i-1} > b_i and b_{i+l} < b_{i+l-1}, while in the second case, we have b_{i-1} < b_i and b_{i+l} > b_{i+l-1} provided b_{i-1} and b_{i+l} can be defined.)
When defining a "séquence", André (1884) actually refers to the list of terms (b_i, b_{i+1}, ..., b_{i+l-1}) rather than the corresponding index set {i, i+1, ..., i+l-1} (which is essentially the same thing).
For more details about these so-called "séquences" (or "alternate runs"), see the comments and examples for sequence A000708.
(End)
For n >= 1, a(n+2) is the number of shortest paths from (0,0) of a square grid to {(x,y): |x|+|y| = n} along the grid line. - Jianing Song, Aug 23 2021

Examples

			From _Petros Hadjicostas_, Aug 08 2019: (Start)
We have a(3) = 4 because each of the following permutations of [3] has the following so-called "séquences" ("alternate runs"):
   123 -> 123 (one),
   132 -> 13, 32 (two),
   213 -> 21, 13 (two),
   231 -> 23, 31 (two),
   312 -> 31, 12 (two),
   321 -> 321 (one).
Recall that a so-called "séquence" ("alternate run") must start with a "maximum" and end with "minimum", or vice versa, and it should not contain any other maxima and minima in between. Two consecutive such "séquences" ("alternate runs") have exactly one minimum or exactly one maximum in common.
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 261.
  • A. W. F. Edwards, Cogwheels of the Mind, Johns Hopkins University Press, 2004, p. 82.

Crossrefs

Column k = 2 of A059427.
Row n = 2 of A371064.

Programs

  • GAP
    a:=List([2..40], n->2^n-4); # Muniru A Asiru, May 17 2018
    
  • Maple
    seq(2^n-4, n=2..40); # Muniru A Asiru, May 17 2018
  • Mathematica
    2^Range[2,40]-4 (* Harvey P. Dale, Jul 05 2019 *)
  • PARI
    a(n)=if(n<2, 0, 2^n-4)
    
  • Python
    def A028399(n): return (1<Chai Wah Wu, Jun 27 2023

Formula

O.g.f.: 4*x^3/((1-x)*(1-2*x)). - R. J. Mathar, Aug 07 2008
From Reinhard Zumkeller, Feb 28 2010: (Start)
a(n) = A175164(2*n)/A140504(n+2);
a(2*n) = A052548(n)*A000918(n) for n > 0;
a(n) = A173787(n,2). (End)
a(n) = a(n-1) + 2^(n-1) (with a(2)=0). - Vincenzo Librandi, Nov 22 2010
a(n) = 4*A000225(n-2). - R. J. Mathar, Dec 15 2015
E.g.f.: 3 + 2*x - 4*exp(x) + exp(2*x). - Stefano Spezia, Apr 06 2021
a(n) = sigma(A003945(n-2)) for n>=3. - Flávio V. Fernandes, Apr 20 2021

Extensions

Additional comments from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 02 2001