A028563 a(n) = n*(n+7).
0, 8, 18, 30, 44, 60, 78, 98, 120, 144, 170, 198, 228, 260, 294, 330, 368, 408, 450, 494, 540, 588, 638, 690, 744, 800, 858, 918, 980, 1044, 1110, 1178, 1248, 1320, 1394, 1470, 1548, 1628, 1710, 1794, 1880, 1968, 2058, 2150, 2244, 2340, 2438, 2538, 2640, 2744, 2850, 2958, 3068, 3180, 3294
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Patrick De Geest, Palindromic Quasipronics of the form n(n+x).
- Felix P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, Preprint on ResearchGate, March 2014.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[n*(n+7): n in [0..60]]; // Vincenzo Librandi, Oct 18 2013
-
Maple
A028563:=n->n*(n + 7); seq(A028563(n), n=0..50); # Wesley Ivan Hurt, Mar 30 2014
-
Mathematica
CoefficientList[Series[2 x (4 - 3 x)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Oct 18 2013 *) LinearRecurrence[{3,-3,1},{0,8,18},60] (* Harvey P. Dale, Oct 07 2015 *)
-
PARI
a(n)=n*(n+7) \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = 2*A055999(n). - Zerinvary Lajos, Feb 12 2007
a(n) = 2*n + a(n-1) + 6. - Vincenzo Librandi, Aug 05 2010
Sum_{n>=1} 1/a(n) = 363/980 = 0.37040816... - R. J. Mathar, Mar 22 2011
G.f.: 2*x*(4-3*x)/(1-x)^3. - Colin Barker, Feb 17 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/7 - 319/2940. - Amiram Eldar, Jan 15 2021
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = 720*cos(sqrt(53)*Pi/2)/(143*Pi).
Product_{n>=1} (1 + 1/a(n)) = -112*cos(3*sqrt(5)*Pi/2)/(11*Pi). (End)
From Elmo R. Oliveira, Dec 12 2024: (Start)
E.g.f.: exp(x)*x*(8 + x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Comments