cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028563 a(n) = n*(n+7).

Original entry on oeis.org

0, 8, 18, 30, 44, 60, 78, 98, 120, 144, 170, 198, 228, 260, 294, 330, 368, 408, 450, 494, 540, 588, 638, 690, 744, 800, 858, 918, 980, 1044, 1110, 1178, 1248, 1320, 1394, 1470, 1548, 1628, 1710, 1794, 1880, 1968, 2058, 2150, 2244, 2340, 2438, 2538, 2640, 2744, 2850, 2958, 3068, 3180, 3294
Offset: 0

Views

Author

Keywords

Comments

a(m), for m >= 1, are the only positive integer values of t for which the Binet-de Moivre formula of the recurrence b(n) = 7*b(n-1) + t*b(n-2) has a square root whose radicand is a square. In particular, sqrt(7^2+4*t) is a positive integer since 7^2 + 4*t = 7^2 + 4*a(m) = (2*m + 7)^2. Thus the characteristic roots are r1 = 7 + m and r2 = -m. - Felix P. Muga II, Mar 28 2014 (edited - Wolfdieter Lang, Apr 17 2014)

Crossrefs

Programs

Formula

a(n) = 2*A055999(n). - Zerinvary Lajos, Feb 12 2007
a(n) = 2*n + a(n-1) + 6. - Vincenzo Librandi, Aug 05 2010
Sum_{n>=1} 1/a(n) = 363/980 = 0.37040816... - R. J. Mathar, Mar 22 2011
G.f.: 2*x*(4-3*x)/(1-x)^3. - Colin Barker, Feb 17 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/7 - 319/2940. - Amiram Eldar, Jan 15 2021
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = 720*cos(sqrt(53)*Pi/2)/(143*Pi).
Product_{n>=1} (1 + 1/a(n)) = -112*cos(3*sqrt(5)*Pi/2)/(11*Pi). (End)
From Elmo R. Oliveira, Dec 12 2024: (Start)
E.g.f.: exp(x)*x*(8 + x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)