A028566 a(n) = n*(n+8).
0, 9, 20, 33, 48, 65, 84, 105, 128, 153, 180, 209, 240, 273, 308, 345, 384, 425, 468, 513, 560, 609, 660, 713, 768, 825, 884, 945, 1008, 1073, 1140, 1209, 1280, 1353, 1428, 1505, 1584, 1665, 1748, 1833, 1920, 2009, 2100, 2193, 2288, 2385
Offset: 0
Links
- Shawn A. Broyles, Table of n, a(n) for n = 0..1000
- Patrick De Geest, Palindromic Quasipronics of the form n(n+x).
- Felix Pozon Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, Preprint on ResearchGate, March 2014.
- Wikipedia, Hydrogen spectral series.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
a(n - 4), n >= 5, fourth column (used for the Brackett series of the hydrogen atom) of triangle A120070.
Programs
-
Magma
[n*(n+8): n in [0..50]]; // G. C. Greubel, Jul 31 2022
-
Mathematica
Table[n (n+8), {n, 0, 50}] (* Bruno Berselli, Apr 06 2014 *)
-
PARI
a(n)=n*(n+8)
-
Sage
[n*(n+8) for n in [0..50]] # Bruno Berselli, Apr 06 2014
-
Scala
(0 to 49).map { n: Int => n * n + 8 * n } // Alonso del Arte, Nov 10 2019
Formula
a(n) = (n+4)^2 - 4^2 = n*(n+8), n >= 0.
G.f.: x*(9 - 7*x)/(1 - x)^3.
a(n) = 2*n + a(n-1) + 7. - Vincenzo Librandi, Aug 05 2010
Sum_{n >= 1} 1/a(n) = 761/2240 = 0.3397321... - R. J. Mathar, Mar 22 2011
Sum_{n>=1} (-1)^(n+1)/a(n) = 533/6720. - Amiram Eldar, Jan 15 2021
E.g.f.: x*(9 + x)*exp(x). - G. C. Greubel, Jul 31 2022
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = 315*sin(sqrt(17)*Pi)/(13*sqrt(17)*Pi).
Product_{n>=1} (1 + 1/a(n)) = -32*sqrt(15)*sin(sqrt(15)*Pi)/(11*Pi). (End)
Comments