cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A028566 a(n) = n*(n+8).

Original entry on oeis.org

0, 9, 20, 33, 48, 65, 84, 105, 128, 153, 180, 209, 240, 273, 308, 345, 384, 425, 468, 513, 560, 609, 660, 713, 768, 825, 884, 945, 1008, 1073, 1140, 1209, 1280, 1353, 1428, 1505, 1584, 1665, 1748, 1833, 1920, 2009, 2100, 2193, 2288, 2385
Offset: 0

Views

Author

Keywords

Comments

a(m) where m is a positive integer are the only positive integer values of t for which the Binet-de Moivre Formula of the recurrence b(n) = 8*b(n-1) + t*b(n-2) with b(0) = 0 and b(1) = 1 has a root which is a square. In particular, sqrt(8^2 + 4*t) is a positive integer since 8^2 + 4*t = 8^2 + 4*a(m) = (2*m + 8)^2. Thus, the characteristics roots are r1 = 8 + m and r2 = -m. - Felix P. Muga II, Mar 28 2014

Crossrefs

a(n - 4), n >= 5, fourth column (used for the Brackett series of the hydrogen atom) of triangle A120070.

Programs

  • Magma
    [n*(n+8): n in [0..50]]; // G. C. Greubel, Jul 31 2022
  • Mathematica
    Table[n (n+8), {n, 0, 50}] (* Bruno Berselli, Apr 06 2014 *)
  • PARI
    a(n)=n*(n+8)
    
  • Sage
    [n*(n+8) for n in [0..50]] # Bruno Berselli, Apr 06 2014
    
  • Scala
    (0 to 49).map { n: Int => n * n + 8 * n } // Alonso del Arte, Nov 10 2019
    

Formula

a(n) = (n+4)^2 - 4^2 = n*(n+8), n >= 0.
G.f.: x*(9 - 7*x)/(1 - x)^3.
a(n) = 2*n + a(n-1) + 7. - Vincenzo Librandi, Aug 05 2010
Sum_{n >= 1} 1/a(n) = 761/2240 = 0.3397321... - R. J. Mathar, Mar 22 2011
Sum_{n>=1} (-1)^(n+1)/a(n) = 533/6720. - Amiram Eldar, Jan 15 2021
E.g.f.: x*(9 + x)*exp(x). - G. C. Greubel, Jul 31 2022
From Amiram Eldar, Feb 12 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = 315*sin(sqrt(17)*Pi)/(13*sqrt(17)*Pi).
Product_{n>=1} (1 + 1/a(n)) = -32*sqrt(15)*sin(sqrt(15)*Pi)/(11*Pi). (End)