cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 24 results. Next

A158405 Triangle T(n,m) = 1+2*m of odd numbers read along rows, 0<=m

Original entry on oeis.org

1, 1, 3, 1, 3, 5, 1, 3, 5, 7, 1, 3, 5, 7, 9, 1, 3, 5, 7, 9, 11, 1, 3, 5, 7, 9, 11, 13, 1, 3, 5, 7, 9, 11, 13, 15, 1, 3, 5, 7, 9, 11, 13, 15, 17, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23
Offset: 1

Views

Author

Paul Curtz, Mar 18 2009

Keywords

Comments

Row sums are n^2 = A000290(n).
The triangle sums, see A180662 for their definitions, link this triangle of odd numbers with seventeen different sequences, see the crossrefs. The knight sums Kn14 - Kn110 have been added. - Johannes W. Meijer, Sep 22 2010
A208057 is the eigentriangle of A158405 such that as infinite lower triangular matrices, A158405 * A208057 shifts the latter, deleting the right border of 1's. - Gary W. Adamson, Feb 22 2012
T(n,k) = A099375(n-1,n-k), 1<=k<=n. [Reinhard Zumkeller, Mar 31 2012]

Examples

			The triangle contains the first n odd numbers in row n:
  1;
  1,3;
  1,3,5;
  1,3,5,7;
From _Seiichi Manyama_, Dec 02 2017: (Start)
    |       a(n)        |                               | A000290(n)
   -----------------------------------------------------------------
   0|                                                      (=  0)
   1|                 1 = 1/3 * ( 3)                       (=  1)
   2|             1 + 3 = 1/3 * ( 5 +  7)                  (=  4)
   3|         1 + 3 + 5 = 1/3 * ( 7 +  9 + 11)             (=  9)
   4|     1 + 3 + 5 + 7 = 1/3 * ( 9 + 11 + 13 + 15)        (= 16)
   5| 1 + 3 + 5 + 7 + 9 = 1/3 * (11 + 13 + 15 + 17 + 19)   (= 25)
(End)
		

Crossrefs

Triangle sums (see the comments): A000290 (Row1; Kn11 & Kn4 & Ca1 & Ca4 & Gi1 & Gi4); A000027 (Row2); A005563 (Kn12); A028347 (Kn13); A028560 (Kn14); A028566 (Kn15); A098603 (Kn16); A098847 (Kn17); A098848 (Kn18); A098849 (Kn19); A098850 (Kn110); A000217 (Kn21. Kn22, Kn23, Fi2, Ze2); A000384 (Kn3, Fi1, Ze3); A000212 (Ca2 & Ze4); A000567 (Ca3, Ze1); A011848 (Gi2); A001107 (Gi3). - Johannes W. Meijer, Sep 22 2010

Programs

  • Haskell
    a158405 n k = a158405_row n !! (k-1)
    a158405_row n = a158405_tabl !! (n-1)
    a158405_tabl = map reverse a099375_tabl
    -- Reinhard Zumkeller, Mar 31 2012
    
  • Mathematica
    Table[2 Range[1, n] - 1, {n, 12}] // Flatten (* Michael De Vlieger, Oct 01 2015 *)
  • PARI
    a(n) = 2*(n-floor((-1+sqrt(8*n-7))/2)*(floor((-1+sqrt(8*n-7))/2)+1)/2)-1;
    vector(100, n, a(n)) \\ Altug Alkan, Oct 01 2015

Formula

a(n) = 2*i-1, where i = n-t(t+1)/2, t = floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Feb 03 2013
a(n) = 2*A002262(n-1) + 1. - Eric Werley, Sep 30 2015

Extensions

Edited by R. J. Mathar, Oct 06 2009

A120071 a(n) = n*(n+20).

Original entry on oeis.org

0, 21, 44, 69, 96, 125, 156, 189, 224, 261, 300, 341, 384, 429, 476, 525, 576, 629, 684, 741, 800, 861, 924, 989, 1056, 1125, 1196, 1269, 1344, 1421, 1500, 1581, 1664, 1749, 1836, 1925, 2016, 2109, 2204, 2301, 2400, 2501, 2604, 2709, 2816, 2925, 3036, 3149, 3264
Offset: 0

Views

Author

Wolfdieter Lang, Jul 20 2006

Keywords

Crossrefs

a(n-10), n >= 11, tenth column (used for the n=10 series of the hydrogen atom) of triangle A120070.
For n*(n+18) see A098850.

Programs

Formula

a(n) = (n+10)^2 - 10^2 = n*(n+20), n >= 0.
G.f.: x*(21-19*x)/(1-x)^3.
a(n) = 2*n + a(n-1) + 19 (with a(0)=0). - Vincenzo Librandi, Nov 13 2010
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(20)/20 = A001008(20)/A102928(20) = 11167027/62078016, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 155685007/4655851200. (End)
From Elmo R. Oliveira, Jan 12 2025: (Start)
E.g.f.: exp(x)*x*(21 + x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n >= 3. (End)

A132765 a(n) = n*(n + 23).

Original entry on oeis.org

0, 24, 50, 78, 108, 140, 174, 210, 248, 288, 330, 374, 420, 468, 518, 570, 624, 680, 738, 798, 860, 924, 990, 1058, 1128, 1200, 1274, 1350, 1428, 1508, 1590, 1674, 1760, 1848, 1938, 2030, 2124, 2220, 2318, 2418, 2520, 2624, 2730, 2838, 2948, 3060, 3174, 3290, 3408
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

a(n) = n*(n + 23).
a(n) = 2*n + a(n-1) + 22 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
From Chai Wah Wu, Dec 17 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
G.f.: 2*x*(12 - 11*x)/(1-x)^3. (End)
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(23)/23 = A001008(23)/A102928(23) = 444316699/2736605872, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/23 - 3825136961/123147264240. (End)
E.g.f.: x*(24 + x)*exp(x). - G. C. Greubel, Mar 14 2022

A094728 Triangle read by rows: T(n,k) = n^2 - k^2, 0 <= k < n.

Original entry on oeis.org

1, 4, 3, 9, 8, 5, 16, 15, 12, 7, 25, 24, 21, 16, 9, 36, 35, 32, 27, 20, 11, 49, 48, 45, 40, 33, 24, 13, 64, 63, 60, 55, 48, 39, 28, 15, 81, 80, 77, 72, 65, 56, 45, 32, 17, 100, 99, 96, 91, 84, 75, 64, 51, 36, 19, 121, 120, 117, 112, 105, 96, 85, 72, 57, 40, 21
Offset: 1

Views

Author

Reinhard Zumkeller, May 24 2004

Keywords

Comments

(T(n,k) mod 4) <> 2, see A042965, A016825.
All numbers m occur A034178(m) times.
The row polynomials T(n,x) appear in the calculation of the column g.f.s of triangle A120070 (used to find the frequencies of the spectral lines of the hydrogen atom).

Examples

			n=3: T(3,x) = 9+8*x+5*x^2.
Triangle begins:
   1;
   4,  3;
   9,  8,  5;
  16, 15, 12,  7;
  25, 24, 21, 16,  9;
  36, 35, 32, 27, 20, 11;
  49, 48, 45, 40, 33, 24, 13;
  64, 63, 60, 55, 48, 39, 28, 15;
  81, 80, 77, 72, 65, 56, 45, 32, 17;
  ... etc. - _Philippe Deléham_, Mar 07 2013
		

Crossrefs

Programs

  • Magma
    [n^2-k^2: k in [0..n-1], n in [1..15]]; // G. C. Greubel, Mar 12 2024
    
  • Mathematica
    Table[n^2 - k^2, {n,12}, {k,0,n-1}]//Flatten (* Michael De Vlieger, Nov 25 2015 *)
  • SageMath
    flatten([[n^2-k^2 for k in range(n)] for n in range(1,16)]) # G. C. Greubel, Mar 12 2024

Formula

Row polynomials: T(n,x) = n^2*Sum_{m=0..n} x^m - Sum_{m=0..n} m^2*x^m = Sum_{k=0..n-1} T(n,k)*x^k, n >= 1.
T(n, k) = A004736(n,k)*A094727(n,k).
T(n, 0) = A000290(n).
T(n, 1) = A005563(n-1) for n>1.
T(n, 2) = A028347(n) for n>2.
T(n, 3) = A028560(n-3) for n>3.
T(n, 4) = A028566(n-4) for n>4.
T(n, n-1) = A005408(n).
T(n, n-2) = A008586(n-1) for n>1.
T(n, n-3) = A016945(n-2) for n>2.
T(n, n-4) = A008590(n-2) for n>3.
T(n, n-5) = A017329(n-3) for n>4.
T(n, n-6) = A008594(n-3) for n>5.
T(n, n-8) = A008598(n-2) for n>7.
T(A005408(k), k) = A000567(k).
Sum_{k=0..n} T(n, k) = A002412(n) (row sums).
From G. C. Greubel, Mar 12 2024: (Start)
Sum_{k=0..n-1} (-1)^k * T(n, k) = A000384(floor((n+1)/2)).
Sum_{k=0..floor((n-1)/2)} T(n-k, k) = A128624(n).
Sum_{k=0..floor((n-1)/2)} (-1)^k*T(n-k, k) = (1/2)*n*(n+1 - (-1)^n*cos(n*Pi/2)). (End)
G.f.: x*(1 - 3*x^2*y + x*(1 + y))/((1 - x)^3*(1 - x*y)^2). - Stefano Spezia, Aug 04 2025

A132762 a(n) = n*(n + 19).

Original entry on oeis.org

0, 20, 42, 66, 92, 120, 150, 182, 216, 252, 290, 330, 372, 416, 462, 510, 560, 612, 666, 722, 780, 840, 902, 966, 1032, 1100, 1170, 1242, 1316, 1392, 1470, 1550, 1632, 1716, 1802, 1890, 1980, 2072, 2166, 2262, 2360, 2460, 2562, 2666, 2772, 2880, 2990, 3102, 3216
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

a(n) = 2*n + a(n-1) + 18 for n > 0, a(0) = 0. - Vincenzo Librandi, Aug 03 2010
From Chai Wah Wu, Dec 17 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
G.f.: 2*x*(10 - 9*x)/(1-x)^3. (End)
a(n) = 2*A051942(n+9). - R. J. Mathar, Sep 05 2018
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(19)/19 = A001008(19)/A102928(19) = 275295799/1474352880, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/19 - 33464927/884611728. (End)
E.g.f.: x*(20 + x)*exp(x). - G. C. Greubel, Mar 14 2022

A132764 a(n) = n*(n+22).

Original entry on oeis.org

0, 23, 48, 75, 104, 135, 168, 203, 240, 279, 320, 363, 408, 455, 504, 555, 608, 663, 720, 779, 840, 903, 968, 1035, 1104, 1175, 1248, 1323, 1400, 1479, 1560, 1643, 1728, 1815, 1904, 1995, 2088, 2183, 2280, 2379, 2480, 2583, 2688, 2795, 2904, 3015, 3128, 3243, 3360
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Examples

			a(1)=2*1+0+21=23; a(2)=2*2+23+21=48; a(3)=2*3+48+21=75. - _Vincenzo Librandi_, Aug 03 2010
		

Crossrefs

Programs

Formula

a(n) = n*(n + 22).
a(n) = 2*n + a(n-1) + 21 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=23, a(2)=48, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 02 2012
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(22)/22 = A001008(22)/A102928(22) = 19093197/113809696, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 156188887/5121436320. (End)
From G. C. Greubel, Mar 14 2022: (Start)
G.f.: x*(23 - 21*x)/(1-x)^3.
E.g.f.: x*(23 + x)*exp(x). (End)

A132763 a(n) = n*(n+21).

Original entry on oeis.org

0, 22, 46, 72, 100, 130, 162, 196, 232, 270, 310, 352, 396, 442, 490, 540, 592, 646, 702, 760, 820, 882, 946, 1012, 1080, 1150, 1222, 1296, 1372, 1450, 1530, 1612, 1696, 1782, 1870, 1960, 2052, 2146, 2242, 2340, 2440, 2542, 2646, 2752, 2860, 2970, 3082, 3196, 3312
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

a(n) = n*(n + 21).
a(n) = 2*n + a(n-1) + 20 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=22, a(2)=46, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 25 2014
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(21)/21 = A001008(21)/A102928(21) = 18858053/108636528, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/21 - 166770367/4888643760. (End)
From Stefano Spezia, Jan 30 2021: (Start)
O.g.f.: 2*x*(11 - 10*x)/(1 - x)^3.
E.g.f.: x*(22 + x)*exp(x). (End)

A132766 a(n) = n*(n+24).

Original entry on oeis.org

0, 25, 52, 81, 112, 145, 180, 217, 256, 297, 340, 385, 432, 481, 532, 585, 640, 697, 756, 817, 880, 945, 1012, 1081, 1152, 1225, 1300, 1377, 1456, 1537, 1620, 1705, 1792, 1881, 1972, 2065, 2160, 2257, 2356, 2457, 2560, 2665, 2772, 2881, 2992, 3105, 3220, 3337
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n (n + 24), {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 25, 52}, 50] (* Harvey P. Dale, Feb 11 2016 *)
  • PARI
    a(n)=n*(n+24) \\ Charles R Greathouse IV, Jun 17 2017
    
  • Sage
    [n*(n+24) for n in (0..50)] # G. C. Greubel, Mar 14 2022

Formula

a(n) = n*(n + 24).
a(n) = 2*n + a(n-1) + 23 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=25, a(2)=52; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Feb 11 2016
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(24)/24 = A001008(24)/A102928(24) = 1347822955/8566766208, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3602044091/128501493120. (End)
From G. C. Greubel, Mar 14 2022: (Start)
G.f.: 2*x*(13 - 12*x)/(1-x)^3.
E.g.f.: x*(26 + x)*exp(x). (End)

A132767 a(n) = n*(n + 25).

Original entry on oeis.org

0, 26, 54, 84, 116, 150, 186, 224, 264, 306, 350, 396, 444, 494, 546, 600, 656, 714, 774, 836, 900, 966, 1034, 1104, 1176, 1250, 1326, 1404, 1484, 1566, 1650, 1736, 1824, 1914, 2006, 2100, 2196, 2294, 2394, 2496, 2600, 2706, 2814, 2924, 3036, 3150, 3266, 3384
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Comments

a(n) is the Zagreb 1 index of the Mycielskian of the cycle graph C[n]. See p. 205 of the D. B. West reference. - Emeric Deutsch, Nov 04 2016

References

  • Douglas B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001.

Crossrefs

Programs

Formula

a(n) = 2*n + a(n-1) + 24 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(n) = n^2 + 25*n. - Omar E. Pol, Nov 04 2016
From Chai Wah Wu, Dec 17 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
G.f.: 2*x*(13 - 12*x)/(1-x)^3. (End)
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(25)/25 = A001008(25)/A102928(25) = 34052522467/223092870000, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/25 - 19081066231/669278610000. (End)
E.g.f.: x*(26 + x)*exp(x). - G. C. Greubel, Mar 13 2022

A100345 Triangle read by rows: T(n,k) = n*(n+k), 0 <= k <= n.

Original entry on oeis.org

0, 1, 2, 4, 6, 8, 9, 12, 15, 18, 16, 20, 24, 28, 32, 25, 30, 35, 40, 45, 50, 36, 42, 48, 54, 60, 66, 72, 49, 56, 63, 70, 77, 84, 91, 98, 64, 72, 80, 88, 96, 104, 112, 120, 128, 81, 90, 99, 108, 117, 126, 135, 144, 153, 162, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 18 2004

Keywords

Comments

Distinct members (except 0) are in A071562. Numbers occurring at least twice are in A175040. - Franklin T. Adams-Watters, Apr 04 2010

Examples

			Triangle begins:
   0
   1   2
   4   6   8
   9  12  15  18
  16  20  24  28  32
  25  30  35  40  45  50
  36  42  48  54  60  66  72
  49  56  63  70  77  84  91  98
  64  72  80  88  96 104 112 120 128
		

Crossrefs

Programs

  • Mathematica
    Table[n(n+k),{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Aug 16 2018 *)
  • PARI
    row(n) = vector(n+1, k, n*(n+k-1)); \\ Amiram Eldar, May 09 2025

Formula

T(n,0) = A000290(n).
T(n,1) = A002378(n) for n > 0.
T(n,2) = A005563(n) for n > 1.
T(n,3) = A028552(n) for n > 2.
T(n,4) = A028347(n+2) for n > 3.
T(n,5) = A028557(n) for n > 4.
T(n,6) = A028560(n) for n > 5.
T(n,7) = A028563(n) for n > 6.
T(n,8) = A028566(n) for n > 7.
T(n,9) = A028569(n) for n > 8.
T(n,10) = A098603(n) for n > 9.
T(n,n-5) = A071355(n-4) for n > 4.
T(n,n-4) = A054000(n-1) for n > 3.
T(n,n-3) = A014107(n) for n > 2.
T(n,n-2) = A046092(n-1) for n > 1.
T(n,n-1) = A000384(n) for n > 0.
T(n,n) = A001105(n).
Row sums give A085789 for n > 0.
G.f.: x*(1 + 2*y + 6*x^3*y^2 - 3*x^2*y*(1 + 2*y) + x*(1 - 3*y + 2*y^2))/((1 - x)^3*(1 - x*y)^3). - Stefano Spezia, Jul 03 2025
Showing 1-10 of 24 results. Next