cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A056126 a(n) = n*(n + 17)/2.

Original entry on oeis.org

0, 9, 19, 30, 42, 55, 69, 84, 100, 117, 135, 154, 174, 195, 217, 240, 264, 289, 315, 342, 370, 399, 429, 460, 492, 525, 559, 594, 630, 667, 705, 744, 784, 825, 867, 910, 954, 999, 1045, 1092, 1140, 1189, 1239, 1290, 1342, 1395, 1449, 1504, 1560, 1617, 1675
Offset: 0

Views

Author

Barry E. Williams, Jul 07 2000

Keywords

Crossrefs

Programs

Formula

G.f.: x*(9-8*x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A126890(n,8) for n>7. - Reinhard Zumkeller, Dec 30 2006
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*stirling1(n-k,i)* Product_{j=0..k-1} (-a-j), then a(n) = -f(n,n-1,9), for n>=1. - Milan Janjic, Dec 20 2008
a(n) = a(n-1) + n + 8 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010
a(n) = 9*n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
E.g.f.: x*(18 + x)*exp(x)/2. - G. C. Greubel, Jan 19 2020
From Amiram Eldar, Jan 10 2021: (Start)
Sum_{n>=1} 1/a(n) = 2*A001008(17)/(17*A002805(17)) = 42142223/104144040.
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/17 - 1768477/20828808. (End)

A098849 a(n) = n*(n + 16).

Original entry on oeis.org

0, 17, 36, 57, 80, 105, 132, 161, 192, 225, 260, 297, 336, 377, 420, 465, 512, 561, 612, 665, 720, 777, 836, 897, 960, 1025, 1092, 1161, 1232, 1305, 1380, 1457, 1536, 1617, 1700, 1785, 1872, 1961, 2052, 2145, 2240, 2337, 2436, 2537, 2640, 2745, 2852, 2961
Offset: 0

Views

Author

Eugene McDonnell (eemcd(AT)mac.com), Nov 04 2004

Keywords

Crossrefs

a(n-8), n>=9, eighth column (used for the n=8 series of the hydrogen atom) of triangle A120070.

Programs

Formula

a(n) = (n+8)^2 - 8^2 = n*(n + 16), n>=0.
G.f.: x*(17 - 15*x)/(1-x)^3.
a(n) = a(n-1) + 2*n + 15 (with a(0)=0). - Vincenzo Librandi, Nov 17 2010
From G. C. Greubel, Jul 29 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
E.g.f.: x*(17 + x)*exp(x). (End)
From Amiram Eldar, Jan 15 2021: (Start)
Sum_{n>=1} 1/a(n) = H(16)/16 = A001008(16)/A102928(16) = 2436559/11531520, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 95549/2306304. (End)

Extensions

More terms from Emeric Deutsch, Mar 26 2005

A132761 a(n) = n*(n+17).

Original entry on oeis.org

0, 18, 38, 60, 84, 110, 138, 168, 200, 234, 270, 308, 348, 390, 434, 480, 528, 578, 630, 684, 740, 798, 858, 920, 984, 1050, 1118, 1188, 1260, 1334, 1410, 1488, 1568, 1650, 1734, 1820, 1908, 1998, 2090, 2184, 2280, 2378, 2478, 2580, 2684, 2790, 2898, 3008, 3120
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Comments

a(n) is the first Zagreb index of the helm graph H[n] (n>=3). - Emeric Deutsch, Nov 05 2016
From Emeric Deutsch, Nov 07 2016: (Start)
a(n) is the first Zagreb index of the graph obtained by joining one vertex of the cycle graph C[n] with each vertex of a second cycle graph C[n].
The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternately, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph. (End)
From Emeric Deutsch, May 11 2018: (Start)
The M-polynomial of the Helm graph H[n] is M(H[n];x,y) = n*x*y^4 + n*x^4*y^4 + n*x^4*y^n.
The helm graph H[n] is the graph obtained from an n-wheel graph by adjoining a pendant edge at each node of the cycle. (End)

Crossrefs

Programs

Formula

a(n) = n*(n + 17).
a(n) = A132760(n) + 2*n = A132765(n) - 6*n = A098849(n) + n = A120071(n) - 3*n. - Zerinvary Lajos, Feb 17 2008
a(n) = 2*n + a(n-1) + 16 for n > 0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: 2*x*(9 - 8*x)/(1 - x)^3. - Emeric Deutsch, Nov 07 2016
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(17)/17 = A001008(17)/A102928(17) = 42142223/208288080, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/17 - 1768477/41657616. (End)
From Elmo R. Oliveira, Dec 12 2024: (Start)
E.g.f.: exp(x)*x*(18 + x).
a(n) = 2*A056126(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A132765 a(n) = n*(n + 23).

Original entry on oeis.org

0, 24, 50, 78, 108, 140, 174, 210, 248, 288, 330, 374, 420, 468, 518, 570, 624, 680, 738, 798, 860, 924, 990, 1058, 1128, 1200, 1274, 1350, 1428, 1508, 1590, 1674, 1760, 1848, 1938, 2030, 2124, 2220, 2318, 2418, 2520, 2624, 2730, 2838, 2948, 3060, 3174, 3290, 3408
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

a(n) = n*(n + 23).
a(n) = 2*n + a(n-1) + 22 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
From Chai Wah Wu, Dec 17 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
G.f.: 2*x*(12 - 11*x)/(1-x)^3. (End)
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(23)/23 = A001008(23)/A102928(23) = 444316699/2736605872, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/23 - 3825136961/123147264240. (End)
E.g.f.: x*(24 + x)*exp(x). - G. C. Greubel, Mar 14 2022

A132760 a(n) = n*(n+15).

Original entry on oeis.org

0, 16, 34, 54, 76, 100, 126, 154, 184, 216, 250, 286, 324, 364, 406, 450, 496, 544, 594, 646, 700, 756, 814, 874, 936, 1000, 1066, 1134, 1204, 1276, 1350, 1426, 1504, 1584, 1666, 1750, 1836, 1924, 2014, 2106, 2200, 2296, 2394, 2494
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

a(n) = n*(n + 15).
a(n) = 2*A056121(n). - Reinhard Zumkeller, Mar 20 2009
a(n) = 2*n + a(n-1) + 14 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
G.f.: 2*x*(-8+7*x)/(x-1)^3. - R. J. Mathar, Jul 14 2012
Sum_{n>=1} 1/a(n) = 1195757/5405400 = 0.22121526621... - R. J. Mathar, Jul 14 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/15 - 52279/1081080. - Amiram Eldar, Jan 15 2021
From Elmo R. Oliveira, Dec 12 2024: (Start)
E.g.f.: exp(x)*x*(16 + x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A132759 a(n) = n*(n+13).

Original entry on oeis.org

0, 14, 30, 48, 68, 90, 114, 140, 168, 198, 230, 264, 300, 338, 378, 420, 464, 510, 558, 608, 660, 714, 770, 828, 888, 950, 1014, 1080, 1148, 1218, 1290, 1364, 1440, 1518, 1598, 1680, 1764, 1850, 1938, 2028, 2120, 2214, 2310, 2408
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Comments

a(n) is the first Zagreb index of the gear graph g[n]. The first Zagreb index of a simple connected graph is the sum of the squared degrees of its vertices. Alternately, it is the sum of the degree sums d(i) + d(j) over all edges ij of the graph. The gear graph g[n] is defined as a wheel graph with n+1 vertices with a vertex added between each pair of adjacent vertices of the outer cycle. - Emeric Deutsch, Nov 09 2016

Crossrefs

Programs

Formula

a(n) = n*(n + 13) = 2*A056119(n).
a(n) = 2*n + a(n-1) + 12 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
G.f.: 2*x*(-7+6*x)/(x-1)^3. - R. J. Mathar, Jul 14 2012
Sum_{n>=1} 1/a(n) = 1145993/4684680 = 0.2446256... - R. J. Mathar, Jul 14 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/13 - 263111/4684680. - Amiram Eldar, Jan 15 2021
From Elmo R. Oliveira, Dec 12 2024: (Start)
E.g.f.: exp(x)*x*(14 + x).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)

A132762 a(n) = n*(n + 19).

Original entry on oeis.org

0, 20, 42, 66, 92, 120, 150, 182, 216, 252, 290, 330, 372, 416, 462, 510, 560, 612, 666, 722, 780, 840, 902, 966, 1032, 1100, 1170, 1242, 1316, 1392, 1470, 1550, 1632, 1716, 1802, 1890, 1980, 2072, 2166, 2262, 2360, 2460, 2562, 2666, 2772, 2880, 2990, 3102, 3216
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

a(n) = 2*n + a(n-1) + 18 for n > 0, a(0) = 0. - Vincenzo Librandi, Aug 03 2010
From Chai Wah Wu, Dec 17 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
G.f.: 2*x*(10 - 9*x)/(1-x)^3. (End)
a(n) = 2*A051942(n+9). - R. J. Mathar, Sep 05 2018
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(19)/19 = A001008(19)/A102928(19) = 275295799/1474352880, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/19 - 33464927/884611728. (End)
E.g.f.: x*(20 + x)*exp(x). - G. C. Greubel, Mar 14 2022

A132764 a(n) = n*(n+22).

Original entry on oeis.org

0, 23, 48, 75, 104, 135, 168, 203, 240, 279, 320, 363, 408, 455, 504, 555, 608, 663, 720, 779, 840, 903, 968, 1035, 1104, 1175, 1248, 1323, 1400, 1479, 1560, 1643, 1728, 1815, 1904, 1995, 2088, 2183, 2280, 2379, 2480, 2583, 2688, 2795, 2904, 3015, 3128, 3243, 3360
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Examples

			a(1)=2*1+0+21=23; a(2)=2*2+23+21=48; a(3)=2*3+48+21=75. - _Vincenzo Librandi_, Aug 03 2010
		

Crossrefs

Programs

Formula

a(n) = n*(n + 22).
a(n) = 2*n + a(n-1) + 21 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=23, a(2)=48, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 02 2012
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(22)/22 = A001008(22)/A102928(22) = 19093197/113809696, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 156188887/5121436320. (End)
From G. C. Greubel, Mar 14 2022: (Start)
G.f.: x*(23 - 21*x)/(1-x)^3.
E.g.f.: x*(23 + x)*exp(x). (End)

A132763 a(n) = n*(n+21).

Original entry on oeis.org

0, 22, 46, 72, 100, 130, 162, 196, 232, 270, 310, 352, 396, 442, 490, 540, 592, 646, 702, 760, 820, 882, 946, 1012, 1080, 1150, 1222, 1296, 1372, 1450, 1530, 1612, 1696, 1782, 1870, 1960, 2052, 2146, 2242, 2340, 2440, 2542, 2646, 2752, 2860, 2970, 3082, 3196, 3312
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

a(n) = n*(n + 21).
a(n) = 2*n + a(n-1) + 20 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=22, a(2)=46, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 25 2014
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(21)/21 = A001008(21)/A102928(21) = 18858053/108636528, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/21 - 166770367/4888643760. (End)
From Stefano Spezia, Jan 30 2021: (Start)
O.g.f.: 2*x*(11 - 10*x)/(1 - x)^3.
E.g.f.: x*(22 + x)*exp(x). (End)

A132766 a(n) = n*(n+24).

Original entry on oeis.org

0, 25, 52, 81, 112, 145, 180, 217, 256, 297, 340, 385, 432, 481, 532, 585, 640, 697, 756, 817, 880, 945, 1012, 1081, 1152, 1225, 1300, 1377, 1456, 1537, 1620, 1705, 1792, 1881, 1972, 2065, 2160, 2257, 2356, 2457, 2560, 2665, 2772, 2881, 2992, 3105, 3220, 3337
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n (n + 24), {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 25, 52}, 50] (* Harvey P. Dale, Feb 11 2016 *)
  • PARI
    a(n)=n*(n+24) \\ Charles R Greathouse IV, Jun 17 2017
    
  • Sage
    [n*(n+24) for n in (0..50)] # G. C. Greubel, Mar 14 2022

Formula

a(n) = n*(n + 24).
a(n) = 2*n + a(n-1) + 23 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=25, a(2)=52; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Feb 11 2016
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(24)/24 = A001008(24)/A102928(24) = 1347822955/8566766208, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3602044091/128501493120. (End)
From G. C. Greubel, Mar 14 2022: (Start)
G.f.: 2*x*(13 - 12*x)/(1-x)^3.
E.g.f.: x*(26 + x)*exp(x). (End)
Showing 1-10 of 18 results. Next