A028871 Primes of the form k^2 - 2.
2, 7, 23, 47, 79, 167, 223, 359, 439, 727, 839, 1087, 1223, 1367, 1847, 2207, 2399, 3023, 3719, 3967, 4759, 5039, 5623, 5927, 7919, 8647, 10607, 11447, 13687, 14159, 14639, 16127, 17159, 18223, 19319, 21023, 24023, 25919, 28559, 29927
Offset: 1
References
- D. Shanks, Solved and Unsolved Problems in Number Theory, 2nd. ed., Chelsea, 1978, p. 31.
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..10000
- P. De Geest, Palindromic Quasipronics of the form n(n+x)
- Eric Weisstein's World of Mathematics, Near-Square Prime
- Wikipedia, Bunyakovsky conjecture
Programs
-
Haskell
a028871 n = a028871_list !! (n-1) a028871_list = filter ((== 1) . a010051') a008865_list -- Reinhard Zumkeller, May 06 2013
-
Magma
[p: p in PrimesUpTo(100000)| IsSquare(p+2)]; // Vincenzo Librandi, Jun 19 2014
-
Maple
select(isprime, [2,seq((2*n+1)^2-2, n=1..1000)]); # Robert Israel, Dec 09 2014
-
Mathematica
lst={};Do[s=n^2;If[PrimeQ[p=s-2], AppendTo[lst, p]], {n, 6!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 26 2008 *) aa = {}; Do[If[4 == Length[ContinuedFraction[(1 + Sqrt[Prime[m]])/2][[2]]], AppendTo[aa, Prime[m]]], {m, 1, 1000}]; aa (* Artur Jasinski, Feb 03 2010 *) Select[Table[n^2 - 2, {n, 400}], PrimeQ] (* Vincenzo Librandi, Jun 19 2014 *)
-
PARI
list(lim)=select(n->isprime(n),vector(sqrtint(floor(lim)+2),k,k^2-2)) \\ Charles R Greathouse IV, Jul 25 2011
Formula
a(n) = A028870(n)^2 -2. - R. J. Mathar, Dec 12 2023
Comments