cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A028884 a(n) = (n + 3)^2 - 8.

Original entry on oeis.org

1, 8, 17, 28, 41, 56, 73, 92, 113, 136, 161, 188, 217, 248, 281, 316, 353, 392, 433, 476, 521, 568, 617, 668, 721, 776, 833, 892, 953, 1016, 1081, 1148, 1217, 1288, 1361, 1436, 1513, 1592, 1673, 1756, 1841, 1928, 2017, 2108, 2201, 2296, 2393
Offset: 0

Views

Author

Keywords

Comments

From Klaus Purath, Jan 04 2023: (Start)
The product of two consecutive terms belongs to the sequence: a(n)*a(n+1) = a(a(n)+n) = (a(n)+n)*(a(n+1)-n-1) + 1.
a(n) is never divisible by primes given in A003629.
Each odd prime factor p divides exactly 2 out of any p consecutive terms. If a(i) and a(k) form such a pair that are divisible by p, then i + k == -6 (mod p).
The prime factors are listed in A038873 and the primes in A028886.
For n > 0, this is a proper subsequence of A079896.
Conjecture: a(n) = A079896(A265284(n-1)). -
(End)

Examples

			From _Stefano Spezia_, Nov 08 2022: (Start)
Illustrations for n = 0..4:
          *       * * *     * * * * *
      a(0) = 1    *   *     *       *
                  * * *     *   *   *
                a(1) = 8    *       *
                            * * * * *
                            a(2) = 17
.
   * * * * * * *    * * * * * * * * *
   *           *    *               *
   *   *   *   *    *   *   *   *   *
   *           *    *               *
   *   *   *   *    *   *   *   *   *
   *           *    *               *
   * * * * * * *    *   *   *   *   *
     a(3) = 28      *               *
                    * * * * * * * * *
                        a(4) = 41
(End)
		

Crossrefs

Programs

Formula

a(n) = a(n-1) + 2*n + 5 (with a(0) = 1). - Vincenzo Librandi, Aug 05 2010
a(n) = A028560(n) + 1; A014616(n) = floor(a(n+1)/4). - Reinhard Zumkeller, Apr 07 2013
G.f.: (-1 - 5*x + 4*x^2)/(x - 1)^3. - R. J. Mathar, Mar 24 2013
Sum_{n >= 0} 1/a(n) = 51/112 - Pi*cot(2*Pi*sqrt(2))/(4*sqrt(2)) = 1.3839174974448... . - Vaclav Kotesovec, Apr 10 2016
E.g.f.: (1 + 7*x + x^2)*exp(x). - G. C. Greubel, Aug 19 2017
Sum_{n >= 0} (-1)^n/a(n) = (-19 + 14*sqrt(2)*Pi*cosec(2*sqrt(2)*Pi))/112. - Amiram Eldar, Nov 04 2020
From Klaus Purath, Jan 04 2023: (Start)
a(n) = 2*a(n-1) - a(n-2) + 2, n >= 2.
a(n) = A082111(n) + n.
a(n) = A190576(n+1) - n. (End)
From Amiram Eldar, Feb 05 2024: (Start)
Product_{n>=1} (1 - 1/a(n)) = 7*Pi/(45*sqrt(2)*sin(2*sqrt(2)*Pi)).
Product_{n>=0} (1 + 1/a(n)) = (4*sqrt(14)/9)*sin(sqrt(7)*Pi)/sin(2*sqrt(2)*Pi). (End)

Extensions

Definition corrected by Omar E. Pol, Jul 27 2009

A166147 a(n) = 4*n^2 + 4*n - 7.

Original entry on oeis.org

1, 17, 41, 73, 113, 161, 217, 281, 353, 433, 521, 617, 721, 833, 953, 1081, 1217, 1361, 1513, 1673, 1841, 2017, 2201, 2393, 2593, 2801, 3017, 3241, 3473, 3713, 3961, 4217, 4481, 4753, 5033, 5321, 5617, 5921, 6233, 6553, 6881, 7217, 7561, 7913, 8273, 8641
Offset: 1

Views

Author

Vincenzo Librandi, Oct 08 2009

Keywords

Comments

Primes in the sequence are in A028886. - Bruno Berselli, Mar 16 2012
The number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 643", based on the 5-celled von Neumann neighborhood. - Robert Price, May 19 2016
a(n) = y - x for any primitive Pythagorean triangle (x^2 + y^2 = z^2), where z - x = 8. Also, a(n+2) = y + x, and y = 8n + 12. - Boyd Blundell, Jul 31 2021

References

  • Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

Crossrefs

Cf. A028886.

Programs

  • Magma
    I:=[1, 17, 41]; [n le 3 select I[n] else 3*Self(n-1)-3*Self(n-2)+1*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Mar 15 2012
  • Mathematica
    CoefficientList[Series[(1+14x-7x^2)/(1-x)^3,{x,0,50}],x] (* or *) LinearRecurrence[{3, -3, 1}, {1, 17, 41}, 50] (* Vincenzo Librandi, Mar 15 2012 *)
    Table[4 n^2 + 4 n - 7, {n, 46}] (* Michael De Vlieger, Apr 27 2016 *)
  • PARI
    a(n)=8*binomial(n+1,2)-7 \\ Charles R Greathouse IV, Jan 11 2012
    

Formula

a(n) = a(n-1)+8*n with n>1, a(1)=1.
From Vincenzo Librandi, Mar 15 2012: (Start)
G.f.: x*(1+14*x-7*x^2)/(1-x)^3.
a(n) = 3*a(n-1) -3*a(n-2) +a(n-3). (End)
E.g.f.: (-7 + 8*x + 4*x^2)*exp(x) + 7. - G. C. Greubel, Apr 26 2016
Sum_{n>=1} 1/a(n) = 1/7 + (Pi/(8*sqrt(2)))*tan(sqrt(2)*Pi). - Amiram Eldar, Feb 20 2023

Extensions

New name from Charles R Greathouse IV, Jan 11 2012

A028885 Numbers k such that k^2 - 8 is prime.

Original entry on oeis.org

5, 7, 9, 11, 17, 19, 21, 23, 25, 31, 35, 37, 45, 49, 51, 53, 65, 67, 81, 87, 91, 93, 101, 103, 115, 117, 119, 121, 123, 129, 133, 135, 143, 145, 147, 149, 161, 163, 173, 177, 185, 187, 191, 203, 205, 207, 213, 227, 229, 231, 235, 241, 245, 247, 257, 259, 261, 269
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A028886 (associated primes).

Programs

Extensions

Checked by Neven Juric (neven.juric(AT)apis-it.hr), Feb 04 2008
Showing 1-3 of 3 results.