cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A029780 Numbers k such that every digit that appears in k also appears at least once in both k^2 and k^3.

Original entry on oeis.org

0, 1, 5, 6, 10, 11, 25, 50, 55, 60, 64, 66, 76, 99, 100, 101, 110, 111, 112, 115, 116, 125, 225, 250, 275, 288, 323, 376, 405, 499, 500, 501, 502, 525, 550, 555, 600, 602, 625, 640, 642, 644, 660, 666, 676, 724, 726, 733, 755, 760, 776, 777, 833
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[0,1000],Min[DigitCount[#^2,10,IntegerDigits[#]]]>0 && Min[ DigitCount[ #^3,10, IntegerDigits[#]]]>0&] (* Harvey P. Dale, Aug 12 2016 *)
  • Python
    from itertools import count, islice
    def A029780_gen(startvalue=0): # generator of terms >= startvalue
        return filter(lambda n:set(str(n)) <= set(str(m:=n**2)) & set(str(n*m)), count(max(startvalue,0)))
    A029780_list = list(islice(A029780_gen(),20)) # Chai Wah Wu, Apr 03 2023

Formula

A029772 intersect A029776. - Sean A. Irvine, Mar 04 2020

A030080 Primes p such that digits of p appear in p^3.

Original entry on oeis.org

5, 11, 29, 59, 61, 67, 71, 73, 97, 101, 109, 137, 151, 191, 229, 233, 251, 281, 311, 331, 337, 347, 389, 401, 449, 467, 499, 541, 619, 641, 683, 701, 719, 733, 751, 769, 787, 829, 881, 883, 887, 919, 947, 977, 991, 997, 1009, 1013, 1019, 1021
Offset: 1

Views

Author

Keywords

Crossrefs

Primes in A029776.
Cf. A030082.

Programs

  • Mathematica
    Select[Prime[Range[200]],Intersection[IntegerDigits[#],IntegerDigits[#^3]]==Union[IntegerDigits[#]]&] (* Harvey P. Dale, Apr 23 2025 *)

Extensions

Offset changed by Andrew Howroyd, Aug 13 2024

A029777 Cubes k such that digits of cube root of k appear in k.

Original entry on oeis.org

0, 1, 64, 125, 216, 729, 1000, 1331, 1728, 9261, 13824, 15625, 24389, 32768, 35937, 39304, 59319, 64000, 85184, 117649, 125000, 132651, 157464, 166375, 175616, 205379, 216000, 226981, 262144, 274625, 287496, 300763, 357911
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A029776.

Programs

  • Mathematica
    Select[Range[0,100]^3,SubsetQ[IntegerDigits[#],IntegerDigits[CubeRoot[#]]]&] (* Harvey P. Dale, Jul 01 2025 *)

Formula

a(n) = A029776(n)^3. - Andrew Howroyd, Aug 11 2024

Extensions

Offset corrected by Andrew Howroyd, Aug 11 2024

A064931 Numbers m such that the digits of m are also digits of m^3.

Original entry on oeis.org

1, 4, 5, 6, 9, 10, 11, 12, 21, 24, 25, 29, 32, 33, 34, 39, 40, 49, 50, 51, 54, 56, 59, 60, 61, 64, 65, 67, 71, 72, 73, 75, 76, 90, 97, 99, 100, 101, 102, 106, 109, 110, 114, 119, 120, 124, 125, 129, 137, 153, 176, 201, 202, 210, 212, 224, 228, 231, 233, 236
Offset: 1

Views

Author

Joseph L. Pe, Feb 14 2002

Keywords

Comments

Presumably if a digit d appears k times in m, then it should appear at least k times in m^3. - N. J. A. Sloane, Nov 24 2018

Examples

			12^3 = 1728, which contains all digits of 12, so 12 is a term of the sequence.
		

Crossrefs

Cf. A029776.

Programs

  • Mathematica
    Select[Range[400],Min[DigitCount[#^3]-DigitCount[#]]>-1&] (* Harvey P. Dale, Nov 24 2018 *)

Extensions

Corrected and Mathematica program replaced by Harvey P. Dale, Nov 24 2018

A074913 Digits of n appear in n^2 and in n^3.

Original entry on oeis.org

0, 1, 5, 6, 10, 11, 25, 50, 60, 64, 76, 100, 101, 110, 125, 250, 275, 376, 405, 500, 501, 502, 600, 602, 625, 640, 642, 724, 726, 760, 946, 963, 976, 996, 1000, 1001, 1005, 1006, 1010, 1021, 1025, 1050, 1060, 1100, 1171, 1201, 1205, 1250, 1258, 1421, 1465
Offset: 0

Views

Author

Zak Seidov, Oct 01 2002

Keywords

Comments

From first 1000 n = 0 - 999, there are 34 such n, sharing their digits with n^2 and n^3. From first 100000 n = 0 - 999999, there are 1650 such n.

Examples

			n = 963, n^2 = 927369 -> 927(369), n^3 = 893056347 -> 8(9)305(63)47.
		

Crossrefs

Showing 1-5 of 5 results.