A029907 a(n+1) = a(n) + a(n-1) + Fibonacci(n), with a(0) = 0 and a(1) = 1.
0, 1, 2, 4, 8, 15, 28, 51, 92, 164, 290, 509, 888, 1541, 2662, 4580, 7852, 13419, 22868, 38871, 65920, 111556, 188422, 317689, 534768, 898825, 1508618, 2528836, 4233872, 7080519, 11828620, 19741179, 32916068, 54835556, 91276202, 151814645, 252318312
Offset: 0
Examples
a(4)=8 because matchings of fan graph with edges {OA,OB,OC,AB,AC} are: {},{OA},{OB},{OC},{AB},{AC},{OA,BC},{OC,AB}.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Jean-Luc Baril and Nathanaƫl Hassler, Intervals in a family of Fibonacci lattices, Univ. de Bourgogne (France, 2024). See p. 5.
- David Broadhurst, Zig-zag resistance and OEIS sequence A029907, Apr 11 2024
- Jia Huang, Compositions with restricted parts, arXiv:1812.11010 [math.CO], 2018.
- Mengmeng Liu and Andrew Yezhou Wang, The Number of Designated Parts in Compositions with Restricted Parts, J. Int. Seq., Vol. 23 (2020), Article 20.1.8.
- Index entries for linear recurrences with constant coefficients, signature (2,1,-2,-1).
Programs
-
Haskell
a029907 n = a029907_list !! n a029907_list = 0 : 1 : zipWith (+) (tail a000045_list) (zipWith (+) (tail a029907_list) a029907_list) -- Reinhard Zumkeller, Nov 01 2013
-
Magma
[((n+4)*Fibonacci(n)+2*n*Fibonacci(n-1))/5: n in [0..40]]; // Vincenzo Librandi, Feb 25 2018
-
Maple
with(combinat); A029907 := proc(n) options remember; if n <= 1 then n else procname(n-1)+procname(n-2)+fibonacci(n-1); fi; end;
-
Mathematica
CoefficientList[Series[x(1-x^2)/(1-x-x^2)^2, {x, 0, 37}], x] (* or *) a[n_]:= a[n]= a[n-1] +a[n-2] +Fibonacci[n-1]; a[0]=0; a[1]=1; Array[a, 37] (* or *) LinearRecurrence[{2,1,-2,-1}, {0,1,2,4}, 38] (* Robert G. Wilson v, Jun 22 2014 *)
-
PARI
alias(F,fibonacci); a(n)=((n+4)*F(n)+2*n*F(n-1))/5;
-
SageMath
def A029907(n): return (1/5)*(n*lucas_number2(n, 1, -1) + 4*fibonacci(n)) [A029907(n) for n in (0..40)] # G. C. Greubel, Apr 06 2022
Formula
G.f.: x*(1-x^2)/(1-x-x^2)^2.
a(n) = ((n+4)*Fibonacci(n) + 2*n*Fibonacci(n-1))/5.
a(n+1) = Sum_{k=0..n} Sum_{j=0..floor(k/2)} binomial(n-j, j). - Paul Barry, Oct 23 2004
a(n) = F(n) + Sum_{k=1..n-1} F(k)*F(n-k), where F=Fibonacci. - Reinhard Zumkeller, Nov 01 2013
a(n) = A001629(n+1) - A001629(n-1), where A001629 is the first convolution of the Fibonacci numbers. - Gregory L. Simay, Aug 30 2022
E.g.f.: exp(x/2)*(5*x*cosh(sqrt(5)*x/2) + sqrt(5)*(5*x + 8)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Dec 04 2023
Extensions
Additional formula from Wolfdieter Lang, May 02 2000
Additional comments from Michael Somos, Jul 23 2002
Comments