cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A258621 Decimal expansion of sum(1/A030450).

Original entry on oeis.org

2, 2, 5, 6, 9, 4, 7, 4, 5, 8, 5, 2, 6, 5, 9, 7, 9, 5, 5, 4, 6, 2, 7, 3, 6, 7, 2, 4, 4, 4, 2, 3, 4, 2, 2, 1, 0, 5, 5, 9, 2, 3, 6, 5, 0, 8, 8, 9, 3, 6, 9, 5, 9, 5, 3, 3, 4, 6, 0, 0, 4, 9, 6, 0, 9, 2, 6, 7, 5, 4, 9, 2, 8, 1, 7, 5, 2, 2, 0, 0, 6, 7, 7, 6, 1, 4, 8, 9, 6, 2, 1, 3, 3, 1, 7, 7, 7, 7, 7, 7, 2, 8, 5, 6, 4, 6
Offset: 1

Views

Author

Jani Melik, Jun 06 2015

Keywords

Examples

			2.2569474585265979554627367244423422105592365088936959533....
		

Crossrefs

Cf. A030450.

Programs

  • C
    #include 
    #include 
    #define dBIT   512
    #define dLIST  n, t, u
    int main (void) {
    mpfr_t dLIST;
    mpfr_rnd_t trnd;
    unsigned int i;
    trnd = MPFR_RNDU;
    mpfr_inits2 (dBIT, dLIST, (mpfr_ptr) 0);
    mpfr_set_d (n, 1.0, trnd);
    mpfr_set_d (t, 1.0, trnd);
    for (i = 1; i <= 9; i++) {
        mpfr_mul_ui (t, t, i, trnd);
        mpfr_mul (t, t, t, trnd);
        mpfr_set_d (u, 1.0, trnd);
        mpfr_div (u, u, t, trnd);
        mpfr_add (n, n, u, trnd);
    }
    mpfr_printf ("%.106Rg", n);
    mpfr_clears (dLIST, (mpfr_ptr) 0);
    return 0;
    }
  • Sage
    def A030450(n) :
       return prod((n-i+1)^(2^i) for i in (1..n))
    N(sum(1/A030450(n) for n in (0..9)), digits=106)
    

A052129 a(0) = 1; thereafter a(n) = n*a(n-1)^2.

Original entry on oeis.org

1, 1, 2, 12, 576, 1658880, 16511297126400, 1908360529573854283038720000, 29134719286683212541013468732221146917416153907200000000
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 12 2002

Keywords

Comments

Somos's quadratic recurrence sequence.
Iff n is prime (n>2), the n-adic valuation of a(2n) is 3*A001045(n) (three times the values at the prime indices of Jacobsthal numbers), which is 2^n+1. For example: the 11-adic valuation at a(22) = 2049 = 3*A001045(11)= 683. 3*683 = 2^11+1 = 2049. True because: When n is prime, n-adic valuation is 1 at A052129(n), then doubles as n-increases to 2n, at which point 1 is added; thus A052129(2n) = 2^n+1. Since 3*A001045(n) = 2^n+1, n-adic valuation of A052129(2n) = 3*A001045(n) when n is prime. - Bob Selcoe, Mar 06 2014
Unreduced denominators of: f(1) = 1, f(n) = f(n-1) + f(n-1)/(n-1). - Daniel Suteu, Jul 29 2016

Examples

			a(3) = 3*a(2)^2 = 3*(2*a(1)^2)^2 = 3*(2*(1*a(0)^2)^2)^2 = 3*(2*(1*1^2)^2)^2 = 3*(2*1)^2 = 3*4 = 12.
G.f. = 1 + x + 2*x^2 + 12*x^3 + 576*x^4 + 1658880*x^5 + 16511297126400*x^6 + ...
		

References

  • S. R. Finch, Mathematical Constants, Cambridge University Press, Cambridge, 2003, p. 446.

Crossrefs

Programs

  • Mathematica
    Join[{1},RecurrenceTable[{a[1]==1,a[n]==n a[n-1]^2},a,{n,10}]]  (* Harvey P. Dale, Apr 26 2011 *)
    a[ n_] := If[ n < 1, Boole[n == 0], Product[ (n - k)^2^k, {k, 0, n - 1}]]; (* Michael Somos, May 24 2013 *)
    a[n_] := Product[ k^(2^(n - k)), {k,1,n}] (* Jonathan Sondow, Mar 17 2014 *)
    NestList[{#[[1]]+1,#[[1]]*#[[2]]^2}&,{1,1},10][[All,2]] (* Harvey P. Dale, Jul 30 2018 *)
  • PARI
    {a(n) = if( n<1, n==0, prod(k=0, n-1, (n - k)^2^k))}; /* Michael Somos, May 24 2013 */

Formula

a(n) ~ s^(2^n) / (n + 2 - 1/n + 4/n^2 - 21/n^3 + 138/n^4 - 1091/n^5 + ...) where s = 1.661687949633... (see A112302) and A116603. - Michael Somos, Apr 02 2006
a(n) = n * A030450(n - 1) if n>0. - Michael Somos, Oct 22 2006
a(n) = (a(n-1) + a(n-2)^2) * (a(n-1) / a(n-2))^2. - Michael Somos, Mar 20 2012
a(n) = product_{k=1..n} k^(2^(n-k)). - Jonathan Sondow, Mar 17 2014
A088679(n+1)/a(n) = n+1. -Daniel Suteu, Jul 29 2016

A005345 Number of elements of a free idempotent monoid on n letters.

Original entry on oeis.org

1, 2, 7, 160, 332381, 2751884514766, 272622932796281408879065987, 3641839910835401567626683593436003894250931310990279692, 848831867913830760986671126293000918118297635181600248839480614255059539078136221019132415247551725144817958905
Offset: 0

Views

Author

Keywords

Comments

An idempotent monoid satisfies the equation xx=x for any element x.
A squarefree word may be equivalent to a smaller or larger word as a consequence of the idempotent equation.

References

  • M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 32.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A030449(n) = a(n) - 1.

Programs

  • Mathematica
    Array[Sum[Binomial[#, k]* Product[(k - i + 1)^(2^i), {i, k}], {k, 0, #}] &, 10, 0] (* Michael De Vlieger, Sep 05 2024 *)
  • PARI
    {a(n)=sum(k=0, n, binomial(n, k)*prod(i=1, k, (k-i+1)^2^i))} /* Michael Somos, Oct 22 2006 */

Formula

a(n) = Sum_{k=0..n} (C(n, k) Prod_{i=1..k} (k-i+1)^(2^i)).
Binomial transform of A030450. - Michael Somos, Oct 22 2006

Extensions

One more term from Gabriel Cunningham (gcasey(AT)mit.edu), Nov 14 2004

A030449 Number of elements in the free band (idempotent semigroup) on n generators.

Original entry on oeis.org

1, 6, 159, 332380, 2751884514765, 272622932796281408879065986, 3641839910835401567626683593436003894250931310990279691
Offset: 1

Views

Author

marcel_j(AT)hilbert.maths.utas.edu.au (Marcel Jackson)

Keywords

Comments

An idempotent semigroup satisfies the equation xx=x for any element x.

References

  • J. Howie, Fundamentals of Semigroup Theory, Oxford University Press 1995, p. 123.

Crossrefs

Cf. A030450. A005345(n)=a(n)+1.

Formula

a(n) = Sum_{k=1..n} C(n, k) A030450(k).

A296042 Decimal expansion of sqrt(1 + 2*sqrt(2 + 3*sqrt(3 + 4*sqrt(4 + 5*sqrt(5 + 6*sqrt(6 + ...)))))).

Original entry on oeis.org

3, 0, 8, 3, 3, 5, 5, 1, 4, 1, 8, 3, 0, 6, 9, 4, 4, 5, 8, 0, 5, 1, 1, 4, 2, 5, 8, 0, 0, 8, 8, 1, 7, 1, 9, 3, 0, 6, 0, 1, 4, 7, 8, 4, 9, 3, 3, 0, 0, 2, 3, 5, 3, 5, 5, 4, 9, 4, 8, 4, 1, 4, 7, 6, 5, 4, 8, 3, 4, 3, 1, 0, 7, 0, 2, 1, 4, 3, 3, 8, 1, 0, 0, 2, 5, 7, 9, 0, 6, 5, 8, 1, 1, 1, 5, 2, 3, 7, 8, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 03 2017

Keywords

Comments

Decimal expansion of sqrt(1 + sqrt(8 + sqrt(432 + sqrt(1327104 + ... + sqrt(k*A030450(k) + ...))))).

Examples

			3.0833551418306944580511425800881719306014784933...
		

Crossrefs

Showing 1-5 of 5 results.