cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A030461 Primes that are concatenations of two consecutive primes.

Original entry on oeis.org

23, 3137, 8389, 151157, 157163, 167173, 199211, 233239, 251257, 257263, 263269, 271277, 331337, 353359, 373379, 433439, 467479, 509521, 523541, 541547, 601607, 653659, 661673, 677683, 727733, 941947, 971977, 10131019
Offset: 1

Views

Author

Keywords

Comments

Any term in the sequence (apart from the first) must be a concatenation of consecutive primes differing by a multiple of 6. - Francis J. McDonnell, Jun 26 2005

Examples

			a(2) is 3137 because 31 and 37 are consecutive primes and after concatenation 3137 is also prime. - _Enoch Haga_, Sep 30 2007
		

Crossrefs

Cf. A030459.
Subsequence of A045533.

Programs

  • Haskell
    a030461 n = a030461_list !! (n-1)
    a030461_list = filter ((== 1) . a010051') a045533_list
    -- Reinhard Zumkeller, Apr 20 2012
    
  • Magma
    [Seqint( Intseq(NthPrime(n+1)) cat Intseq(NthPrime(n)) ): n in [1..200 ]| IsPrime(Seqint( Intseq(NthPrime(n+1)) cat Intseq(NthPrime(n)) )) ]; // Marius A. Burtea, Mar 21 2019
  • Maple
    conc:=proc(a,b) local bb: bb:=convert(b,base,10): 10^nops(bb)*a+b end: p:=proc(n) local w: w:=conc(ithprime(n),ithprime(n+1)): if isprime(w)=true then w else fi end: seq(p(n),n=1..250); # Emeric Deutsch
  • Mathematica
    Select[Table[p=Prime[n]; FromDigits[Join[Flatten[IntegerDigits[{p,NextPrime[p]}]]]],{n,170}],PrimeQ] (* Jayanta Basu, May 16 2013 *)
  • PARI
    {digits(n) = if(n==0,[0],u=[];while(n>0,d=divrem(n,10);n=d[1];u=concat(d[2],u));u)} {m=1185;p=2;while(pKlaus Brockhaus
    
  • PARI
    o=2;forprime(p=3,1e4, isprime(eval(Str(o,o=p))) & print1(precprime(p-1),p",")) \\ M. F. Hasler, Feb 06 2011
    

Formula

A030461(n) = concat(A030459(n),A030460(n)) = A045533( A000720( A030459(n))). - M. F. Hasler, Feb 06 2011

Extensions

Edited by N. J. A. Sloane, Apr 19 2009 at the suggestion of Zak Seidov