cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A267692 Terms of A030461 that give successive gap records.

Original entry on oeis.org

23, 3137, 199211, 523541, 16691693, 1393313963, 2428124317, 3498135023, 4028940343, 191353191413, 221327221393, 507217507289, 843911844001, 25654632565559, 55778515577959, 82237498223863, 1127656111276687, 1280935912809491, 2038858320388727, 3338451733384667, 5272111352721287, 9280102992801209
Offset: 1

Views

Author

Jean-Marc Rebert, Jan 19 2016

Keywords

Comments

Subsequence of A030461.

Examples

			a(1) = A030461(1) = 23. gap = 3 - 2 = 1.
a(2) = 3137, because 3137 is the first term in A030461 > 23, with gap = 37 - 31 = 6 > 1.
a(3) = 199211, because 199211 is the first term in A030461 > 3137, with gap = 211 - 199 = 12 > 6.
		

Crossrefs

Programs

  • Mathematica
    Reap[For[record = 0; p = 2, p < 10^8, p = NextPrime[p], If[PrimeQ[pp = FromDigits[Join[IntegerDigits[p], IntegerDigits[np = NextPrime[p]]]]], If[np - p > record, record = np - p; Print[pp]; Sow[pp]]]]][[2, 1]] (* Jean-François Alcover, Mar 02 2016 *)

A267721 a(n) is the least term of A030461 with gap = 6*n between consecutive primes or 0 if no such term exists.

Original entry on oeis.org

3137, 199211, 523541, 16691693, 1393313963, 2428124317, 3498135023, 7318973237, 4028940343, 191353191413, 221327221393, 507217507289, 937253937331, 10402271040311, 843911844001, 25654632565559, 81661078166209, 55778515577959, 82237498223863
Offset: 1

Views

Author

Jean-Marc Rebert, Jan 20 2016

Keywords

Comments

Subsequence of A030461.
a(n) is the concatenation of the smallest prime p and the next prime q, such that p + 6n = q and the concatenations of these 2 primes is also prime. a(n) = 0 if no such term exists.

Examples

			a(1) = A030461(2) = 3137. gap =  37 - 31 = 6 = 6 * 1.
a(2) = 199211, because 199211 is the first term in A030461, with gap = 211 - 199 = 12 = 6 * 2.
		

Crossrefs

Programs

  • Maple
    Primes:= select(isprime,[seq(i,i=3..10^7,2)]):
    cati:= (x,y) -> 10^(1+ilog10(y))*x+y;
    for i from 1 to nops(Primes)-1 do
      g:= Primes[i+1]-Primes[i];
      if g mod 6 <> 0 then next fi;
      if assigned(A[g/6]) then next fi;
      z:= cati(Primes[i],Primes[i+1]);
      if isprime(z) then A[g/6]:= z fi;
    od:
    seq(A[i],i=1..max(map(op,[indices(A)]))); # Robert Israel, Jan 24 2016

A030459 Prime p concatenated with next prime is also prime.

Original entry on oeis.org

2, 31, 83, 151, 157, 167, 199, 233, 251, 257, 263, 271, 331, 353, 373, 433, 467, 509, 523, 541, 601, 653, 661, 677, 727, 941, 971, 1013, 1033, 1181, 1187, 1201, 1223, 1259, 1367, 1453, 1459, 1657, 1669, 1709, 1741, 1861, 1973, 2069, 2161
Offset: 1

Views

Author

Keywords

Comments

Terms 157, 257, 263, 541, 1187, 1459, 2179 also belong to A030460. - Carmine Suriano, Jan 27 2011
All terms, except for the first one, must be either in A185934 or in A185935, i.e., have the same residue (mod 6) as the subsequent prime. - M. F. Hasler, Feb 06 2011

Crossrefs

See A030461 for the concatenated primes.

Programs

  • Mathematica
    Select[Prime[Range[500]],PrimeQ[FromDigits[Join[IntegerDigits[#], IntegerDigits[ NextPrime[#]]]]]&] (* Harvey P. Dale, Jun 20 2011 *)
  • PARI
    o=2;forprime(p=3,1e4, isprime(eval(Str(o,o=p))) & print1(precprime(p-1)","))  \\ M. F. Hasler, Feb 06 2011

Formula

a(n) = A151799(A030460(n)).
A030461(n) = concat(a(n), A030460(n)) = A045533(A000720(a(n))).

A045533 Concatenate the n-th and (n+1)st prime.

Original entry on oeis.org

23, 35, 57, 711, 1113, 1317, 1719, 1923, 2329, 2931, 3137, 3741, 4143, 4347, 4753, 5359, 5961, 6167, 6771, 7173, 7379, 7983, 8389, 8997, 97101, 101103, 103107, 107109, 109113, 113127, 127131, 131137
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Crossrefs

Cf. A077800, A095958 (subsequence), A030461 (primes).

Programs

  • Haskell
    a045533 n = a045533_list !! (n-1)
    a045533_list = f $ map show a000040_list :: [Integer] where
       f (t:ts@(t':_)) = read (t ++ t') : f ts
    -- Reinhard Zumkeller, Apr 20 2012
    
  • Magma
    [Seqint(Intseq(NthPrime(n+1)) cat Intseq(NthPrime(n))): n in [1..50 ] ]; // Marius A. Burtea, Mar 21 2019
  • Mathematica
    #[[1]]*10^IntegerLength[#[[2]]]+#[[2]]&/@Partition[Prime[Range[40]],2,1] (* Harvey P. Dale, Jun 06 2015 *)
  • PARI
    a(n) = eval(concat(Str(prime(n)), Str(prime(n+1)))); \\ Michel Marcus, May 11 2014
    

Formula

a(n) = prime(n)*(10^floor(log_10(prime(n+1)))+1) + prime(n+1). - Conner L. Delahanty, May 10 2014

Extensions

Offset changed to 1, in agreement with (almost?) all references to this sequence, by M. F. Hasler

A030469 Primes which are concatenations of three consecutive primes.

Original entry on oeis.org

5711, 111317, 171923, 313741, 414347, 8997101, 229233239, 239241251, 263269271, 307311313, 313317331, 317331337, 353359367, 359367373, 383389397, 389397401, 401409419, 409419421, 439443449, 449457461
Offset: 1

Views

Author

Keywords

Comments

a(n) = "p(k) p(k+1) p(k+2)" where p(k) is k-th prime
It is conjectured that sequence is infinite. - from Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 09 2009

Examples

			(1) 5=p(3), 7=p(4), 11=p(5) gives a(1).
(2) 7=p(4), 11=p(5), 13=p(6), but 71113 = 7 x 10159
		

References

  • Richard E. Crandall, Carl Pomerance: Prime Numbers, Springer 2005 - from Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 09 2009
  • John Derbyshire: Prime obsession, Joseph Henry Press, Washington, DC 2003 - from Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 09 2009
  • Marcus du Sautoy: Die Musik der Primzahlen. Auf den Spuren des groessten Raetsels der Mathematik, Beck, Muenchen 2004

Crossrefs

Programs

  • Mathematica
    Select[Table[FromDigits[Flatten[IntegerDigits/@{Prime[n],Prime[n+1],Prime[n+2]}]],{n,11000}],PrimeQ] (* Zak Seidov, Oct 16 2009 *)
    concat[{a_,b_,c_}]:=FromDigits[Flatten[IntegerDigits/@{a,b,c}]]; Select[ concat/@ Partition[ Prime[ Range[200]],3,1],PrimeQ] (* Harvey P. Dale, Sep 06 2017 *)
  • PARI
    for(i=1,999, isprime(p=eval(Str(prime(i),prime(i+1),prime(i+2)))) & print1(p," ")) \\ M. F. Hasler, Nov 10 2009

Formula

A132903 INTERSECT A000040. - R. J. Mathar, Nov 11 2009

A086041 Primes that are concatenations of 5 consecutive primes.

Original entry on oeis.org

711131719, 4753596167, 5359616771, 6771737983, 97101103107109, 101103107109113, 149151157163167, 401409419421431, 431433439443449, 479487491499503, 487491499503509, 757761769773787, 827829839853857
Offset: 1

Views

Author

Chuck Seggelin, Jul 07 2003

Keywords

Examples

			a(1)=711131719 because 711131719 is prime and the concatenation of 7, 11, 13, 17 and 19.
		

Crossrefs

A030997 Smallest prime which is a concatenation of n consecutive primes.

Original entry on oeis.org

2, 23, 5711, 2357, 711131719, 113127131137139149, 29313741434753, 107109113127131137139149, 211223227229233239241251257, 691701709719727733739743751757, 2329313741434753596167
Offset: 1

Views

Author

Keywords

Examples

			a(5) = 711131719 is the smallest prime which is the concatenation of five consecutive primes 7, 11, 13, 17 and 19.
		

Crossrefs

Cf. A030461 (primes that are concatenations of two primes), A030469 (three primes), A030473 (four primes), A086041 (five primes).

Programs

  • PARI
    for(k=1,19, for(i=0,1e9, isprime( eval( p=concat( vector( k,j,Str( prime( i+j )))))) & break); print1(p,", ")) \\ M. F. Hasler, Nov 10 2009

A030473 Primes which are concatenations of 4 consecutive primes.

Original entry on oeis.org

2357, 67717379, 838997101, 139149151157, 149151157163, 383389397401, 503509521523, 557563569571, 577587593599, 587593599601, 601607613617, 613617619631, 727733739743, 937941947953, 1181118711931201
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    P:= select(isprime,[2,seq(p,p=3..10^4,2)]):
    select(isprime,[seq(P[i+3]+10^(1+ilog10(P[i+3]))*P[i+2] + 10^(2+ilog10(P[i+3])+ilog10(P[i+2]))*P[i+1] + 10^(3+ilog10(P[i+3])+ilog10(P[i+2])+ilog10(P[i+1]))*P[i], i=1..nops(P)-3)]); # Robert Israel, Apr 14 2016

Extensions

Edited by Charles R Greathouse IV, Apr 23 2010

A174031 The smallest integer k>0 such that the double-concatenation prime(n) // prime(n+1) // k is a prime number.

Original entry on oeis.org

3, 3, 1, 19, 1, 1, 1, 1, 1, 1, 9, 11, 11, 17, 3, 1, 1, 3, 11, 17, 21, 19, 1, 7, 37, 7, 23, 37, 7, 1, 7, 7, 7, 11, 7, 33, 29, 31, 1, 13, 11, 17, 7, 11, 11, 9, 9, 1, 7, 7, 1, 13, 11, 19, 67, 1, 13, 21, 49, 13, 13, 1, 1, 23, 1, 1, 29, 1, 29, 7
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Mar 06 2010

Keywords

Comments

Leading zeros in k are not allowed.
All entries k are odd with final digit 1, 3, 7 or 9.
Dirichlet's prime number theorem for arithmetic progressions says that the sequence is infinite.
Conjecture: 1 appears infinitely often.

Examples

			n=1: 2//3//1 = 231 = 3 * 7 * 11 is not prime, so k<>1. 233 = prime(51), therefore 3 is the first entry.
n=2: 3//5//1 = 351 = 3^3 * 13 is not prime, so k <> 1, but 353 = prime(71), therefore 3 is the second entry.
n=30: 113//127//1 = 1131271 = prime(87976), so the 30th entry is 1.
		

Crossrefs

Programs

  • Maple
    read("transforms") ;
    A174031 := proc(n) for e from 1 do if isprime(digcatL([ithprime(n),ithprime(n+1),e])) then return e ; end if; end do: end proc:

Extensions

Entries checked; replaced variables by OEIS standard names - R. J. Mathar, Nov 17 2010

A030460 Previous prime concatenated with this prime p is a prime.

Original entry on oeis.org

3, 37, 89, 157, 163, 173, 211, 239, 257, 263, 269, 277, 337, 359, 379, 439, 479, 521, 541, 547, 607, 659, 673, 683, 733, 947, 977, 1019, 1039, 1187, 1193, 1213, 1229, 1277, 1373, 1459, 1471, 1663, 1693, 1721, 1747, 1867, 1979, 2081, 2179
Offset: 1

Views

Author

Keywords

Comments

Terms 157, 257, 263, 541, 1187, 1459, 2179 also belong to A030459. [Carmine Suriano, Jan 27 2011]

Programs

  • Mathematica
    Transpose[Select[Partition[Prime[Range[400]],2,1], PrimeQ[FromDigits[ Flatten[IntegerDigits/@#]]]&]][[2]] (* Harvey P. Dale, Dec 23 2011 *)
  • PARI
    c=0; o=2; s=1; forprime(p=3,default(primelimit), p>s & s*=10; isprime(o*s+o=p) & write("b030460.txt",c++," ",p))  \\ M. F. Hasler, Feb 06 2011

Formula

A030459(n) = A151799(a(n)). - M. F. Hasler, Feb 06 2011
A030461(n) = concat(A030459(n),a(n)) = A045533( A000720( A030459(n))). - M. F. Hasler, Feb 06 2011

Extensions

Offset changed from 0 to 1 by M. F. Hasler, Feb 06 2011
Showing 1-10 of 21 results. Next