cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A030459 Prime p concatenated with next prime is also prime.

Original entry on oeis.org

2, 31, 83, 151, 157, 167, 199, 233, 251, 257, 263, 271, 331, 353, 373, 433, 467, 509, 523, 541, 601, 653, 661, 677, 727, 941, 971, 1013, 1033, 1181, 1187, 1201, 1223, 1259, 1367, 1453, 1459, 1657, 1669, 1709, 1741, 1861, 1973, 2069, 2161
Offset: 1

Views

Author

Keywords

Comments

Terms 157, 257, 263, 541, 1187, 1459, 2179 also belong to A030460. - Carmine Suriano, Jan 27 2011
All terms, except for the first one, must be either in A185934 or in A185935, i.e., have the same residue (mod 6) as the subsequent prime. - M. F. Hasler, Feb 06 2011

Crossrefs

See A030461 for the concatenated primes.

Programs

  • Mathematica
    Select[Prime[Range[500]],PrimeQ[FromDigits[Join[IntegerDigits[#], IntegerDigits[ NextPrime[#]]]]]&] (* Harvey P. Dale, Jun 20 2011 *)
  • PARI
    o=2;forprime(p=3,1e4, isprime(eval(Str(o,o=p))) & print1(precprime(p-1)","))  \\ M. F. Hasler, Feb 06 2011

Formula

a(n) = A151799(A030460(n)).
A030461(n) = concat(a(n), A030460(n)) = A045533(A000720(a(n))).

A030461 Primes that are concatenations of two consecutive primes.

Original entry on oeis.org

23, 3137, 8389, 151157, 157163, 167173, 199211, 233239, 251257, 257263, 263269, 271277, 331337, 353359, 373379, 433439, 467479, 509521, 523541, 541547, 601607, 653659, 661673, 677683, 727733, 941947, 971977, 10131019
Offset: 1

Views

Author

Keywords

Comments

Any term in the sequence (apart from the first) must be a concatenation of consecutive primes differing by a multiple of 6. - Francis J. McDonnell, Jun 26 2005

Examples

			a(2) is 3137 because 31 and 37 are consecutive primes and after concatenation 3137 is also prime. - _Enoch Haga_, Sep 30 2007
		

Crossrefs

Cf. A030459.
Subsequence of A045533.

Programs

  • Haskell
    a030461 n = a030461_list !! (n-1)
    a030461_list = filter ((== 1) . a010051') a045533_list
    -- Reinhard Zumkeller, Apr 20 2012
    
  • Magma
    [Seqint( Intseq(NthPrime(n+1)) cat Intseq(NthPrime(n)) ): n in [1..200 ]| IsPrime(Seqint( Intseq(NthPrime(n+1)) cat Intseq(NthPrime(n)) )) ]; // Marius A. Burtea, Mar 21 2019
  • Maple
    conc:=proc(a,b) local bb: bb:=convert(b,base,10): 10^nops(bb)*a+b end: p:=proc(n) local w: w:=conc(ithprime(n),ithprime(n+1)): if isprime(w)=true then w else fi end: seq(p(n),n=1..250); # Emeric Deutsch
  • Mathematica
    Select[Table[p=Prime[n]; FromDigits[Join[Flatten[IntegerDigits[{p,NextPrime[p]}]]]],{n,170}],PrimeQ] (* Jayanta Basu, May 16 2013 *)
  • PARI
    {digits(n) = if(n==0,[0],u=[];while(n>0,d=divrem(n,10);n=d[1];u=concat(d[2],u));u)} {m=1185;p=2;while(pKlaus Brockhaus
    
  • PARI
    o=2;forprime(p=3,1e4, isprime(eval(Str(o,o=p))) & print1(precprime(p-1),p",")) \\ M. F. Hasler, Feb 06 2011
    

Formula

A030461(n) = concat(A030459(n),A030460(n)) = A045533( A000720( A030459(n))). - M. F. Hasler, Feb 06 2011

Extensions

Edited by N. J. A. Sloane, Apr 19 2009 at the suggestion of Zak Seidov

A095958 Twin prime pairs concatenated in decimal representation.

Original entry on oeis.org

35, 57, 1113, 1719, 2931, 4143, 5961, 7173, 101103, 107109, 137139, 149151, 179181, 191193, 197199, 227229, 239241, 269271, 281283, 311313, 347349, 419421, 431433, 461463, 521523, 569571, 599601, 617619, 641643, 659661
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 14 2004

Keywords

Comments

a(n) mod 3 = 0 for n>1, proof: A007953(a(n)) = 2*A007953(A001359(n)+1) and A007953(A001359(n)) mod 3 = 2 for n>1, therefore A007953(a(n)) mod 3 = 0.

Examples

			29 = A001359(5), 29 + 2 = 31 = A006512(5): a(5) = 2931.
		

Crossrefs

Cf. A077800, subsequence of A045533.

Programs

  • Haskell
    a095958 n = a095958_list !! (n-1)
    a095958_list = f $ map show a077800_list :: [Integer] where
       f (t:t':ts) = read (t ++ t') : f ts
    -- Reinhard Zumkeller, Apr 20 2012
    
  • Magma
    [Seqint( Intseq(NthPrime(n+1)) cat Intseq(NthPrime(n)) ): n in [1..150 ]| NthPrime(n+1)-NthPrime(n) eq 2 ]; // Marius A. Burtea, Mar 21 2019
  • Mathematica
    concat[{a_,b_}]:=FromDigits[Flatten[IntegerDigits/@{a,b}]]; concat/@ Select[Partition[ Prime[ Range[150]],2,1],#[[2]]-#[[1]]==2&] (* Harvey P. Dale, Apr 20 2012 *)

A132903 Numbers formed by concatenating 3 consecutive prime numbers.

Original entry on oeis.org

235, 357, 5711, 71113, 111317, 131719, 171923, 192329, 232931, 293137, 313741, 374143, 414347, 434753, 475359, 535961, 596167, 616771, 677173, 717379, 737983, 798389, 838997, 8997101, 97101103, 101103107, 103107109, 107109113, 109113127
Offset: 1

Views

Author

Omar E. Pol, Sep 04 2007

Keywords

Examples

			Prime numbers.
2
3
5 -----------> a(1) = 235
7 -----------> a(2) = 357
11 ----------> a(3) = 5711
		

Crossrefs

Prime numbers: A000040. Cf. A007795, A045533, A091762.

Programs

  • Mathematica
    FromDigits[Flatten[IntegerDigits[#]]]&/@Partition[Prime[Range[40]],3,1] (* Harvey P. Dale, Jan 03 2021 *)

A030460 Previous prime concatenated with this prime p is a prime.

Original entry on oeis.org

3, 37, 89, 157, 163, 173, 211, 239, 257, 263, 269, 277, 337, 359, 379, 439, 479, 521, 541, 547, 607, 659, 673, 683, 733, 947, 977, 1019, 1039, 1187, 1193, 1213, 1229, 1277, 1373, 1459, 1471, 1663, 1693, 1721, 1747, 1867, 1979, 2081, 2179
Offset: 1

Views

Author

Keywords

Comments

Terms 157, 257, 263, 541, 1187, 1459, 2179 also belong to A030459. [Carmine Suriano, Jan 27 2011]

Programs

  • Mathematica
    Transpose[Select[Partition[Prime[Range[400]],2,1], PrimeQ[FromDigits[ Flatten[IntegerDigits/@#]]]&]][[2]] (* Harvey P. Dale, Dec 23 2011 *)
  • PARI
    c=0; o=2; s=1; forprime(p=3,default(primelimit), p>s & s*=10; isprime(o*s+o=p) & write("b030460.txt",c++," ",p))  \\ M. F. Hasler, Feb 06 2011

Formula

A030459(n) = A151799(a(n)). - M. F. Hasler, Feb 06 2011
A030461(n) = concat(A030459(n),a(n)) = A045533( A000720( A030459(n))). - M. F. Hasler, Feb 06 2011

Extensions

Offset changed from 0 to 1 by M. F. Hasler, Feb 06 2011

A229814 Primes which are a concatenation of prime(i) and prime(prime(i)) for some i.

Original entry on oeis.org

23, 1759, 2383, 41179, 61283, 71353, 83431, 127709, 2271433, 3372269, 3532381, 4993559, 5033593, 5714153, 7275503, 8876899, 9117109, 9377351, 9717649, 10618513, 142711909, 157913297, 166314107, 169314437, 170914591, 187116073, 187716127, 190716451, 194916901
Offset: 1

Views

Author

K. D. Bajpai, Sep 30 2013

Keywords

Examples

			a(2)=1759: prime(7)= 17 and prime(17)= 59. Concatenating 17 and 59 gives 1759 which is prime.
a(4)=41179: prime(13)= 41 and prime(41)= 179. Concatenating 41 and 179 gives 41179 which is prime.
		

Crossrefs

Programs

  • Maple
    K := proc(n) local a,b,d; a :=ithprime(n);  b:=ithprime(a); d:=parse(cat(a,b)); if isprime(d) then return (d) end if; end proc:
    seq(K(n), n=1..1000);

A244057 Semiprimes which are concatenation of two consecutive primes.

Original entry on oeis.org

35, 57, 1317, 1923, 2329, 2931, 4143, 5359, 5961, 6167, 7379, 8997, 103107, 131137, 181191, 193197, 211223, 227229, 281283, 307311, 347349, 367373, 379383, 383389, 421431, 443449, 503509, 547557, 557563, 577587, 587593, 593599, 607613, 619631, 641643, 691701, 709719
Offset: 1

Views

Author

K. D. Bajpai, Jun 18 2014

Keywords

Comments

The semiprimes in A045533.

Examples

			35 is in the sequence because the concatenation of [3, 5] = 35 = 5 * 7, which is semiprime.
1923 is in the sequence because concatenation of [19, 23] = 1923 = 3 * 641, which is semiprime.
1113 is not in the sequence because, though 1113 is concatenation of two consecutive primes [11, 13], 1113 = 3 * 7 * 53, which is not semiprime.
		

Crossrefs

Programs

  • Maple
    with(numtheory):with(StringTools):A244057:= proc() local a,b,k; a:=ithprime(n); b:=ithprime(n+1); k:=parse(cat(a,b)); if bigomega(k)=2 then RETURN (k); fi; end: seq(A244057 (), n=1..200);
  • Mathematica
    A244057 = {}; Do[t = FromDigits[Flatten[IntegerDigits /@ {Prime[n], Prime[n + 1]}]]; If [PrimeOmega[t] == 2, AppendTo[A244057, t]], {n, 100}]; A244057

A132901 Numbers formed by concatenating 11 consecutive prime numbers.

Original entry on oeis.org

235711131719232931, 3571113171923293137, 57111317192329313741, 711131719232931374143, 1113171923293137414347, 1317192329313741434753, 1719232931374143475359, 1923293137414347535961, 2329313741434753596167
Offset: 1

Views

Author

Omar E. Pol, Sep 04 2007

Keywords

Crossrefs

Prime numbers: A000040. Cf. A007795, A045533, A059932, A091762.

A132905 Numbers formed by concatenating 5 consecutive prime numbers.

Original entry on oeis.org

235711, 3571113, 57111317, 711131719, 1113171923, 1317192329, 1719232931, 1923293137, 2329313741, 2931374143, 3137414347, 3741434753, 4143475359, 4347535961, 4753596167, 5359616771, 5961677173, 6167717379, 6771737983
Offset: 1

Views

Author

Omar E. Pol, Sep 04 2007

Keywords

Crossrefs

Prime numbers: A000040. Cf. A007795, A045533, A059932, A091762.

A153353 List of pairs of concatenated adjacent primes [p(n),p(n+1)] such that the concatenation is divisible by n.

Original entry on oeis.org

23, 57, 127131, 937941, 2087320879, 6557965581, 925039925051, 14073611407383, 89811798981191, 94647139464723, 1553629915536303, 122504623122504633, 200602291200602313, 495401873495401911, 133201458751133201458773
Offset: 1

Views

Author

Gil Broussard, Dec 24 2008

Keywords

Comments

The corresponding values of n are listed in A125085.
Subset of A045533. [R. J. Mathar, Jan 03 2009]

Examples

			23 is a term because 2 and 3 are adjacent primes and 23 is divisible by 1 (the position of 2 in the sequence of primes).
127131 is a term because 127 and 131 are adjacent primes and 127131 is divisible by 31 (the position of 127 in the sequence of primes).
		

Crossrefs

Programs

  • Maple
    A055642 := proc(n) max(1,ilog10(n)+1) ; end: cat2 := proc(a,b) a*10^A055642(b)+b ; end: A045533 := proc(n) cat2(ithprime(n),ithprime(n+1)) ; end: for n from 1 to 800000 do if A045533(n) mod n = 0 then printf("%d,",A045533(n)) ; fi; od: # R. J. Mathar, Jan 03 2009
  • Mathematica
    p = q = 2; c = 0; lst = {}; Do[c++; q = NextPrime@q; r = FromDigits@ Flatten[{IntegerDigits@ p, IntegerDigits@ q}]; If[Mod[r, c] == 0, AppendTo[lst, r]; Print[{c, r}]]; c++; q = NextPrime@ q; p = q, {n, 174254000}]; lst (* Robert G. Wilson v, Jan 23 2009 *)

Extensions

3 more terms from R. J. Mathar, Jan 03 2009
a(9)-a(14) from Robert G. Wilson v, Jan 23 2009
a(15) from Donovan Johnson, Aug 08 2010
Showing 1-10 of 20 results. Next