A030514 a(n) = prime(n)^4.
16, 81, 625, 2401, 14641, 28561, 83521, 130321, 279841, 707281, 923521, 1874161, 2825761, 3418801, 4879681, 7890481, 12117361, 13845841, 20151121, 25411681, 28398241, 38950081, 47458321, 62742241, 88529281, 104060401, 112550881, 131079601, 141158161
Offset: 1
Links
- R. J. Mathar, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Prime Power.
- OEIS Wiki, Index entries for number of divisors
- Index to sequences related to prime signature
Crossrefs
Programs
-
Haskell
a030514 = (^ 4) . a000040 a030514_list = map (^ 4) a000040_list -- Reinhard Zumkeller, Jun 03 2015
-
Magma
[NthPrime(n)^4: n in [1..100] ]; // Vincenzo Librandi, Apr 22 2011
-
Maple
map(p -> p^4, select(isprime,[2,seq(2*i+1,i=1..100)])); # Robert Israel, Aug 29 2014
-
Mathematica
Array[Prime[#]^4 &, 5!] (* Vladimir Joseph Stephan Orlovsky, Sep 01 2008 *)
-
PARI
a(n)=prime(n)^4 \\ Charles R Greathouse IV, Mar 21 2013
-
Sage
[p**4 for p in prime_range(100)] # Zerinvary Lajos, May 15 2007
Formula
a(n) = A000040(n)^(5-1) = A000040(n)^4, where 5 is the number of divisors of a(n). - Omar E. Pol, May 06 2008
A000005(a(n)) = 5. - Alexandre Wajnberg, Jan 15 2006
A056595(a(n)) = 2. - Reinhard Zumkeller, Aug 15 2011
Sum_{n>=1} 1/a(n) = P(4) = 0.0769931397... (A085964). - Amiram Eldar, Jul 27 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(4)/zeta(8) = 105/Pi^4 (A157290).
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(4) = 90/Pi^4 (A215267). (End)
Extensions
Description corrected by Eric W. Weisstein
Comments