cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A030652 Continued fraction for Gamma(2/3).

Original entry on oeis.org

1, 2, 1, 4, 1, 2, 8, 1, 1, 4, 4, 1, 6, 12, 1, 5, 1, 1, 1, 3, 2, 1, 1, 1, 18, 9, 1, 42, 1, 1, 2, 1, 1, 10, 3, 2, 4, 6, 2, 11, 1, 1, 8, 65, 9, 4, 1, 11, 2, 3, 1, 4, 3, 1, 2, 1, 2, 1, 5, 1, 1, 1, 2, 1, 14, 1, 5, 1, 6, 2, 7, 1, 29, 1, 1, 1, 3, 1, 2, 1, 26, 1, 1, 7, 13, 1, 2, 2, 8, 3, 4, 2, 2, 2
Offset: 0

Views

Author

Paolo Dominici (pl.dm(AT)libero.it)

Keywords

Examples

			1.354117939426400416945288028... = 1 + 1/(2 + 1/(1 + 1/(4 + 1/(1 + ...)))). - _Harry J. Smith_, May 14 2009
		

Crossrefs

Cf. A030651, A073006 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[Gamma[2/3],100] (* Harvey P. Dale, Sep 05 2021 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 5200); x=contfrac(gamma(2/3)); for (n=1, 5000, write("b030652.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 14 2009

Formula

Note that 3*GAMMA(1/3)*GAMMA(2/3) = 2*Pi*sqrt(3).

Extensions

Offset changed by Andrew Howroyd, Aug 03 2024

A322508 Factorial expansion of Gamma(1/3) = Sum_{n>=1} a(n)/n!.

Original entry on oeis.org

2, 1, 1, 0, 1, 2, 5, 6, 7, 2, 1, 8, 5, 7, 9, 12, 13, 10, 10, 13, 17, 18, 5, 1, 6, 3, 26, 13, 20, 29, 8, 31, 27, 19, 21, 27, 5, 14, 12, 3, 9, 37, 34, 40, 14, 29, 35, 12, 27, 4, 36, 22, 24, 11, 31, 37, 12, 5, 47, 14, 22, 18, 51, 20, 51, 4, 15, 54, 61, 26, 55, 2, 6, 73, 7, 17, 66, 54, 27
Offset: 1

Views

Author

G. C. Greubel, Dec 12 2018

Keywords

Examples

			Gamma(1/3) = 2 + 1/2! + 1/3! + 0/4! + 1/5! + 2/6! + 5/7! + 6/8! + ...
		

Crossrefs

Cf. A073005 (decimal expansion), A030651 (continued fraction).
Cf. A068463 (Gamma(3/4)), A068464 (Gamma(1/4)), A322509 (Gamma(2/3)).

Programs

  • Magma
    SetDefaultRealField(RealField(250));  [Floor(Gamma(1/3))] cat [Floor(Factorial(n)*Gamma(1/3)) - n*Floor(Factorial((n-1))*Gamma(1/3)) : n in [2..80]];
    
  • Mathematica
    With[{b = Gamma[1/3]}, Table[If[n==1, Floor[b], Floor[n!*b] - n*Floor[(n-1)!*b]], {n, 1, 100}]]
  • PARI
    default(realprecision, 250); b = gamma(1/3); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", "))
    
  • Sage
    b=gamma(1/3);
    def a(n):
        if (n==1): return floor(b)
        else: return expand(floor(factorial(n)*b) -n*floor(factorial(n-1)*b))
    [a(n) for n in (1..80)]
Showing 1-2 of 2 results.