cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A073006 Decimal expansion of Gamma(2/3).

Original entry on oeis.org

1, 3, 5, 4, 1, 1, 7, 9, 3, 9, 4, 2, 6, 4, 0, 0, 4, 1, 6, 9, 4, 5, 2, 8, 8, 0, 2, 8, 1, 5, 4, 5, 1, 3, 7, 8, 5, 5, 1, 9, 3, 2, 7, 2, 6, 6, 0, 5, 6, 7, 9, 3, 6, 9, 8, 3, 9, 4, 0, 2, 2, 4, 6, 7, 9, 6, 3, 7, 8, 2, 9, 6, 5, 4, 0, 1, 7, 4, 2, 5, 4, 1, 6, 7, 5, 8, 3, 4, 1, 4, 7, 9, 5, 2, 9, 7, 2, 9, 1, 1, 1, 0, 6, 4, 3
Offset: 1

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

This constant is transcendental: Chudnovsky famously proved that Gamma(1/3) is algebraically independent of Pi, but Gamma(1/3)*Gamma(2/3) = 2*Pi/sqrt(3) by the reflection formula. - Charles R Greathouse IV, Aug 21 2023

Examples

			1.354117939426400416945288028154513785519327266056793698394022467963782...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 43, equation 43:4:8 at page 413.

Crossrefs

Cf. A030652 (continued fraction). - Harry J. Smith, May 14 2009

Programs

  • Magma
    SetDefaultRealField(RealField(100)); Gamma(2/3); // G. C. Greubel, Mar 10 2018
  • Mathematica
    RealDigits[ N[ Gamma[2/3], 110]][[1]]
  • PARI
    allocatemem(932245000); default(realprecision, 5080); x=gamma(2/3); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b073006.txt", n, " ", d));  \\ Harry J. Smith, May 14 2009
    

Formula

Gamma(2/3) * A073005 = A186706. - R. J. Mathar, Jun 18 2006

A030651 Continued fraction for Gamma(1/3).

Original entry on oeis.org

2, 1, 2, 8, 1, 2, 1, 1, 2, 1, 1, 3, 1, 1, 9, 1, 4, 1, 3, 1, 7, 1, 1, 3, 6, 2, 2, 1, 1, 32, 3, 3, 3, 1, 24, 2, 2, 25, 1, 2, 1, 6, 2, 1, 1, 3, 1, 9, 3, 2, 1, 6, 7, 2, 8, 2, 5, 1, 5, 1, 2, 2, 2, 2, 4, 3, 1, 5, 1, 15, 1, 1, 2, 4, 3, 3, 1, 5, 1, 4, 1, 8, 1, 3, 1, 1, 8, 2, 1, 2, 1, 514, 1, 2, 1, 1, 1
Offset: 0

Views

Author

Paolo Dominici (pl.dm(AT)libero.it)

Keywords

Examples

			Gamma(1/3) = 2.67893853470774... = 2 + 1/(1 + 1/(2 + 1/(8 + 1/(1 + ...)))). - _Harry J. Smith_, Apr 20 2009
		

Crossrefs

Cf. A030652, A073005 (decimal expansion).

Programs

  • Mathematica
    ContinuedFraction[Gamma[1/3], 50] (* Alonso del Arte, Mar 30 2020 *)
  • PARI
    { default(realprecision, 1080); x=contfrac(gamma(1/3)); for (n=1, 1000, write("b030651.txt", n-1, " ", x[n])); } \\ Harry J. Smith, Apr 20 2009

Formula

Note that 3 * Gamma(1/3) * Gamma(2/3) = 2 * Pi * sqrt(3).

Extensions

Offset changed by Andrew Howroyd, Aug 03 2024

A322509 Factorial expansion of Gamma(2/3) = Sum_{n>=1} a(n)/n!.

Original entry on oeis.org

1, 0, 2, 0, 2, 2, 6, 6, 0, 3, 1, 11, 7, 6, 6, 14, 1, 8, 12, 15, 8, 17, 8, 1, 13, 15, 3, 4, 10, 16, 25, 1, 25, 22, 6, 3, 19, 17, 8, 10, 25, 37, 29, 17, 35, 19, 24, 25, 30, 31, 4, 7, 51, 49, 14, 51, 45, 54, 0, 26, 34, 41, 56, 57, 16, 15, 63, 4, 51, 42, 13, 35, 12, 15, 66, 22, 13, 43, 14, 78
Offset: 1

Views

Author

G. C. Greubel, Dec 12 2018

Keywords

Examples

			Gamma(2/3) = 1 + 0/2! + 2/3! + 0/4! + 2/5! + 2/6! + 6/7! + 6/8! + ...
		

Crossrefs

Cf. A073006 (decimal expansion), A030652 (continued fraction).
Cf. A068463 (Gamma(3/4)), A068464 (Gamma(1/4)), A322508 (Gamma(1/3)).

Programs

  • Magma
    SetDefaultRealField(RealField(250));  [Floor(Gamma(2/3))] cat [Floor(Factorial(n)*Gamma(2/3)) - n*Floor(Factorial((n-1))*Gamma(2/3)) : n in [2..80]];
    
  • Mathematica
    With[{b = Gamma[2/3]}, Table[If[n == 1, Floor[b], Floor[n!*b] - n*Floor[(n - 1)!*b]], {n, 1, 100}]]
  • PARI
    default(realprecision, 250); b = gamma(2/3); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", "))
    
  • Sage
    b=gamma(2/3);
    def a(n):
        if (n==1): return floor(b)
        else: return expand(floor(factorial(n)*b) -n*floor(factorial(n-1)*b))
    [a(n) for n in (1..80)]
Showing 1-3 of 3 results.