A031439 a(0) = 1, a(n) is the greatest prime factor of a(n-1)^2+1 for n > 0.
1, 2, 5, 13, 17, 29, 421, 401, 53, 281, 3037, 70949, 1713329, 1467748131121, 37142837524296348426149, 101591133424866642486477019709, 1650979973845742266714536305651329, 78343914631785958284737, 4029445531112797145738746391569, 350080544438648120162733678636001, 26208090024628793745288451837610346882122253572537, 4717815978577117335515270825550279551117660519482308365269206484133871485221
Offset: 0
Examples
a(16)=A006530(a(15)^2+1)= A006530(101591133424866642486477019709^2+1)= A006530(10320758390549056348725939119133160378521185060950774444682)= A006530(2*29*23201*4645528280970018601*1650979973845742266714536305651329)= 1650979973845742266714536305651329, factorization of A006530(a(15)^2+1) by Dario A. Alpern's program (see link).
Links
- Dennis Langdeau, Table of n, a(n) for n = 0..24
- Dario A. Alpern, Factorization: Elliptic Curve Method
- Jason Papadopoulos, Integer Factorization Source Code.
Crossrefs
Programs
-
Mathematica
gpf[n_] := FactorInteger[n][[-1, 1]]; a[0] = 1; a[n_] := a[n] = gpf[a[n - 1]^2 + 1]; Table[an = a[n]; Print[an]; an, {n, 0, 21}] (* Jean-François Alcover, Nov 04 2011 *) NestList[FactorInteger[#^2+1][[-1,1]]&,1,21] (* Harvey P. Dale, Jul 04 2013 *)
-
PARI
gpf(n)=local(pf);pf=factor(n);pf[matsize(pf)[1],1] vector(20,i,r=if(i==1,1,gpf(r^2+1)))
Extensions
One more term from Vladeta Jovovic, Nov 26 2001
a(16) from Reinhard Zumkeller, Aug 07 2004
a(17)-a(21) from Richard FitzHugh (fitzhughrichard(AT)hotmail.com), Aug 12 2004
Comments