A031973 a(n) = Sum_{k=0..n} n^k.
1, 2, 7, 40, 341, 3906, 55987, 960800, 19173961, 435848050, 11111111111, 313842837672, 9726655034461, 328114698808274, 11966776581370171, 469172025408063616, 19676527011956855057, 878942778254232811938, 41660902667961039785743, 2088331858752553232964200
Offset: 0
Examples
a(3) = 3^0 + 3^1 + 3^2 + 3^3 = 40.
Links
- Nathaniel Johnston, Table of n, a(n) for n = 0..100
Crossrefs
Programs
-
Magma
[&+[n^k: k in [0..n]]: n in [0..30]]; // Vincenzo Librandi, Apr 18 2011
-
Maple
a:= proc(n) local c, i; c:=1; for i to n do c:= c*n+1 od; c end: seq(a(n), n=0..20); # Alois P. Heinz, Aug 15 2013
-
Mathematica
Join[{1},Table[Total[n^Range[0,n]],{n,20}]] (* Harvey P. Dale, Nov 13 2011 *)
-
PARI
a(n)=(n^(n+1)-1)/(n-1) \\ Charles R Greathouse IV, Mar 26 2014
-
Sage
[lucas_number1(n,n,n-1) for n in range(1, 19)] # Zerinvary Lajos, May 16 2009
Formula
a(n) = (n^(n+1)-1)/(n-1) = (A007778(n)-1)/(n-1) = A023037(n)+A000312(n) = A031972(n)+1. - Henry Bottomley, Apr 04 2003
a(n) = A125118(n,n-2) for n>2. - Reinhard Zumkeller, Nov 21 2006
a(n) = [x^n] 1/((1 - x)*(1 - n*x)). - Ilya Gutkovskiy, Oct 04 2017
a(n) = A104878(2n,n). - Alois P. Heinz, May 04 2021
Comments