cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032031 Triple factorial numbers: (3n)!!! = 3^n*n!.

Original entry on oeis.org

1, 3, 18, 162, 1944, 29160, 524880, 11022480, 264539520, 7142567040, 214277011200, 7071141369600, 254561089305600, 9927882482918400, 416971064282572800, 18763697892715776000, 900657498850357248000, 45933532441368219648000, 2480410751833883860992000
Offset: 0

Views

Author

Keywords

Comments

For n >= 1 a(n) is the order of the wreath product of the symmetric group S_n and the elementary Abelian group (C_3)^n. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 07 2001
Laguerre transform of double factorials 2^n*n! = A000165(n). - Paul Barry, Aug 08 2008
For positive n, a(n) equals the permanent of the n X n matrix consisting entirely of 3's. - John M. Campbell, May 26 2011
a(n) is the product of the positive integers <= 3*n that are multiples of 3. - Peter Luschny, Jun 23 2011
Partial products of A008585. - Reinhard Zumkeller, Sep 20 2013

Crossrefs

Cf. Subsequence of A007661.

Programs

  • Haskell
    a032031 n = a032031_list !! n
    a032031_list = scanl (*) 1 $ tail a008585_list
    -- Reinhard Zumkeller, Sep 20 2013
  • Magma
    [3^n*Factorial(n): n in [0..60]]; // Vincenzo Librandi, Apr 22 2011
    
  • Maple
    with(combstruct):ZL:=[T,{T=Union(Z,Prod(Epsilon,Z,T), Prod(T,Z,Epsilon), Prod(T,Z))},labeled]:seq(count(ZL,size=i)/i,i=1..17); # Zerinvary Lajos, Dec 16 2007
    A032031 := n -> mul(k, k = select(k-> k mod 3 = 0, [$1 .. 3*n])): seq(A032031(n), n = 0 .. 16); # Peter Luschny, Jun 23 2011
  • Mathematica
    Table[3^n*Gamma[1 + n], {n, 0, 20}] (* Roger L. Bagula, Oct 30 2008 *)
    Join[{1},FoldList[Times,3*Range[20]]] (* Harvey P. Dale, Feb 10 2019 *)
    Table[Times@@Range[3n,1,-3],{n,0,20}] (* Harvey P. Dale, Apr 14 2023 *)
  • PARI
    a(n)=3^n*n!;
    
  • PARI
    a(n)=prod(k=1,n, 3*k );
    
  • SageMath
    def A032031(n) : return mul(j for j in range(3,3*(n+1),3))
    [A032031(n) for n in (0..16)]  # Peter Luschny, May 20 2013
    

Formula

a(n) = 3^n*n!.
a(n) = Product_{k=1..n} 3*k.
E.g.f.: 1/(1-3*x).
a(n) = Sum_{k=0..n} C(n,k)*(n!/k!)*2^k*k!. - Paul Barry, Aug 08 2008
a(0) = 1, a(n) = 3*n*a(n-1). - Arkadiusz Wesolowski, Oct 04 2011
G.f.: 2/G(0), where G(k)= 1 + 1/(1 - 6*x*(k+1)/(6*x*(k+1) - 1 + 6*x*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 30 2013
G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(3*k+3)/(x*(3*k+3) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 06 2013
G.f.: 1/Q(0), where Q(k) = 1 - 3*x*(2*k+1) - 9*x^2*(k+1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Sep 28 2013
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = e^(1/3) (A092041).
Sum_{n>=0} (-1)^n/a(n) = e^(-1/3) (A092615). (End)