cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032263 Number of ways to partition n labeled elements into 4 pie slices allowing the pie to be turned over; number of 2-element proper antichains of an n-element set.

Original entry on oeis.org

0, 0, 0, 3, 30, 195, 1050, 5103, 23310, 102315, 437250, 1834503, 7597590, 31175235, 127067850, 515396703, 2083011870, 8396420955, 33779000850, 135696347703, 544527210150, 2183335871475, 8749027724250, 35043169903503, 140313869216430, 561679070838795
Offset: 1

Views

Author

Keywords

Comments

A proper antichain is an antichain iff each two of its members have a nonempty intersection.
Let P(A) be the power set of an n-element set A. Then a(n+1) = the number of pairs of elements {x,y} of P(A) for which x and y are intersecting but for which x is not a subset of y and y is not a subset of x. This is just a different formulation of the alternative sequence description. - Ross La Haye, Jan 09 2008

Crossrefs

Cf. A000453.

Programs

  • Magma
    I:=[0,0,0,3]; [n le 4 select I[n] else 10*Self(n-1)-35*Self(n-2)+50*Self(n-3)-24*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Oct 19 2013
    
  • Maple
    A032263 := proc(n) (4^n-4*3^n+6*2^n-4)/8 ; end: seq(A032263(n),n=1..20) ; # R. J. Mathar, Feb 26 2008
  • Mathematica
    CoefficientList[Series[(3x^4)/((1-x)(1-2x)(1-3x)(1-4x)),{x,0,40}],x] (* Harvey P. Dale, Feb 28 2013 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -24,50,-35,10]^(n-1)*[0;0;0;3])[1,1] \\ Charles R Greathouse IV, Feb 09 2017

Formula

"DIJ[ 4 ]" (bracelet, indistinct, labeled, 4 parts) transform of 1, 1, 1, 1, ...
3*S(n,4) = (4^n-4*3^n+6*2^n-4)/8. - R. J. Mathar, Feb 26 2008
G.f.: 3*x^4/((1-x)*(1-2*x)*(1-3*x)*(1-4*x)). - Colin Barker, May 29 2012
a(n) = 3*A000453(n). - Alois P. Heinz, Jan 24 2018
E.g.f.: (exp(x) - 1)^4/8. - Stefano Spezia, Apr 06 2022

Extensions

Alternative description from Vladeta Jovovic, Goran Kilibarda, Zoran Maksimovic
More terms from Vincenzo Librandi, Oct 19 2013