cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A032349 Number of paths from (0,0) to (3n,0) that stay in first quadrant (but may touch horizontal axis), where each step is (2,1),(1,2) or (1,-1) and start with (2,1).

Original entry on oeis.org

1, 4, 24, 172, 1360, 11444, 100520, 911068, 8457504, 80006116, 768464312, 7474561164, 73473471344, 728745517972, 7284188537672, 73301177482172, 742009157612608, 7550599410874820, 77193497566719320, 792498588659426924
Offset: 1

Views

Author

Keywords

Comments

a(n) is the maximum number of distinct sets that can be obtained as complete parenthesizations of “S_1 union S_2 intersect S_3 union S_4 intersect S_5 union ... union S_{2*n}”, where n union and n-1 intersection operations alternate, starting with a union, and S_1, S_2, ... , S_{2*n} are sets. - Alexander Burstein, Nov 22 2023

Examples

			From _Alexander Burstein_, Feb 14 2025: (Start)
a(2) = 4 as the maximum number of distinct sets obtained as complete parenthesizations of S_1 u(nion) S_2 (i)n(tersect) S_3 u(nion) S_4:
S_1 u (S_2 n (S_3 u S_4)),
S_1 u ((S_2 n S_3) u S_4) = (S_1 u (S_2 n S_3)) u S_4,
(S_1 u S_2) n (S_3 u S_4),
((S_1 u S_2) n S_3) u S_4. (End)
		

Crossrefs

Convolution of A027307 with itself.
Cf. A060628 diagonal(-6).

Programs

  • Mathematica
    RecurrenceTable[{n*(2*n-1)*a[n] == (28*n^2-65*n+36)*a[n-1] - (64*n^2-323*n+408)*a[n-2] - 3*(n-4)*(2*n-5)*a[n-3],a[1]==1,a[2]==4,a[3]==24},a,{n,20}] (* Vaclav Kotesovec, Oct 08 2012 *)
  • Maxima
    a(n):=2*sum((2*n+i-1)!/(i!*(n-i-1)!*(n+i+1)!),i,0,n-1); /* Vladimir Kruchinin, Oct 18 2011 */
    
  • PARI
    vector(30, n, 2*sum(k=0, n-1, (2*n+k-1)!/(k!*(n-k-1)!*(n+k+1)!))) \\ Altug Alkan, Oct 06 2015
    
  • PARI
    {a(n) = my(A=1); for(i=1,n, A = 1 + x*(A + sqrt(A +x*O(x^n)))^2); polcoeff(A,n)}
    for(n=0,30, print1(a(n),", ")) \\ Paul D. Hanna, Jun 11 2016

Formula

G.f.: z*A^2, where A is the g.f. of A027307.
a(n) = 2*Sum_{i=0..n-1} (2*n+i-1)!/(i!*(n-i-1)!*(n+i+1)!). - Vladimir Kruchinin, Oct 18 2011
D-finite with recurrence: n*(2*n-1)*a(n) = (28*n^2-65*n+36)*a(n-1) - (64*n^2-323*n+408)*a(n-2) - 3*(n-4)*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 08 2012
a(n) ~ sqrt(45*sqrt(5)-100)*((11+5*sqrt(5))/2)^n/(5*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 08 2012
G.f. A(x) satisfies: A(x) = 1 + x * ( A(x) + sqrt(A(x)) )^2. - Paul D. Hanna, Jun 11 2016
From Peter Bala, May 07 2023: (Start)
n*(2*n-1)*(5*n-9)*a(n) = 2*(55*n^3-209*n^2+255*n-99)*a(n-1) + (n-3)*(2*n-3)*(5*n-4)*a(n-2) with a(1) = 1 and a(2) = 4.
G.f.: A(x) = series reversion of x*(1 - x)^2/(1 + x)^2. (End)