A102230
Triangle, read by rows, where each column equals the convolution of A032349 with the prior column, starting with column 0 equal to A032349 shift right.
Original entry on oeis.org
1, 1, 1, 4, 5, 1, 24, 32, 9, 1, 172, 236, 76, 13, 1, 1360, 1896, 656, 136, 17, 1, 11444, 16116, 5828, 1348, 212, 21, 1, 100520, 142544, 53112, 13184, 2376, 304, 25, 1, 911068, 1298524, 494364, 128924, 25436, 3804, 412, 29, 1, 8457504, 12100952
Offset: 0
This triangle is generated by the recurrence:
T(n,k) = Sum_{i=0..n-k} T(i+1,0)*T(n-i-1,k-1) for n>k>0,
T(n,0) = Sum_{i=0..n-1} (2*i+1)*T(n-1,i) for n>0, with T(0,0)=1.
Rows begin:
[1],
[1,1],
[4,5,1],
[24,32,9,1],
[172,236,76,13,1],
[1360,1896,656,136,17,1],
[11444,16116,5828,1348,212,21,1],
[100520,142544,53112,13184,2376,304,25,1],...
Column 0 is formed from the partial sums of the prior row
after a term-by-term product with the odd numbers:
T(2,0) = 1*T(1,0) + 3*T(1,1) = 1*1 + 3*1 = 4.
T(3,0) = 1*T(2,0) + 3*T(2,1) + 5*T(2,2) = 1*4 + 3*5 + 5*1 = 24.
A102231
Column 1 of triangle A102230 and equals the convolution of A032349 with A032349 shift right.
Original entry on oeis.org
0, 1, 5, 32, 236, 1896, 16116, 142544, 1298524, 12100952, 114820964, 1105574400, 10775285836, 106098789832, 1053858546516, 10546951101360, 106249238782652, 1076554249491640, 10964085715303620, 112175072002688480
Offset: 0
-
{a(n)=local(B=vector(n+1,k,if(k==1,1, sum(i=0,k-2,2^(i+1)*binomial(2*k-2,i)*binomial(k-1,i+1))/(k-1)))); return(polcoeff(Ser(B)^2+x*Ser(B)^4+x*O(x^n),n))}
A365843
Expansion of (1/x) * Series_Reversion( x*(1-x)^3/(1+x)^3 ).
Original entry on oeis.org
1, 6, 54, 578, 6810, 85278, 1113854, 15004746, 206955378, 2908113974, 41484917958, 599202514578, 8745727050762, 128790559374030, 1911191826600462, 28551332345784730, 429040549473424866, 6480799118506040934, 98349636147075506006, 1498732955394826784226
Offset: 0
-
a(n) = sum(k=0, n, binomial(3*n+k+2, k)*binomial(3*(n+1), n-k))/(n+1);
A371675
G.f. satisfies A(x) = 1 + x * A(x)^(3/2) * (1 + A(x)^(1/2))^2.
Original entry on oeis.org
1, 4, 32, 324, 3696, 45316, 583152, 7769348, 106250144, 1482925956, 21037812352, 302478044996, 4397824031376, 64549296707460, 955150116019920, 14233474784850948, 213417133281087040, 3217460713030341892, 48741781832765496288, 741606216370357708612
Offset: 0
-
a(n, r=2, t=3, u=1) = r*sum(k=0, n, binomial(n, k)*binomial(t*n+u*k+r, n)/(t*n+u*k+r));
A100324
Square array, read by antidiagonals, where rows are successive self-convolutions of the top row, which equals A003169 shifted one place right.
Original entry on oeis.org
1, 1, 1, 1, 2, 3, 1, 3, 7, 14, 1, 4, 12, 34, 79, 1, 5, 18, 61, 195, 494, 1, 6, 25, 96, 357, 1230, 3294, 1, 7, 33, 140, 575, 2277, 8246, 22952, 1, 8, 42, 194, 860, 3716, 15372, 57668, 165127, 1, 9, 52, 259, 1224, 5641, 25298, 108018, 415995, 1217270
Offset: 0
Array, A(n,k), begins as:
1, 1, 3, 14, 79, 494, 3294, ...;
1, 2, 7, 34, 195, 1230, 8246, ...;
1, 3, 12, 61, 357, 2277, 15372, ...;
1, 4, 18, 96, 575, 3716, 25298, ...;
1, 5, 25, 140, 860, 5641, 38775, ...;
1, 6, 33, 194, 1224, 8160, 56695, ...;
1, 7, 42, 259, 1680, 11396, 80108, ...;
Antidiagonal triangle, T(n,k), begins as:
1;
1, 1;
1, 2, 3;
1, 3, 7, 14;
1, 4, 12, 34, 79;
1, 5, 18, 61, 195, 494;
1, 6, 25, 96, 357, 1230, 3294;
1, 7, 33, 140, 575, 2277, 8246, 22952;
-
f[n_]:= f[n]= If[n<2, 1, If[n==2, 3, ((324*n^2-708*n+360)*f[n-1] - (371*n^2-1831*n+2250)*f[n-2] +(20*n^2-130*n+210)*f[n-3])/(16*n*(2*n -1)) ]]; (* f = A003169 *)
A[n_, k_]:= A[n, k]= If[n==0, f[k], If[k==0, 1, Sum[A[0,k-j]*A[n-1,j], {j,0,k}]]]; (* A = A100324 *)
T[n_, k_]:= A[n-k, k];
Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 31 2023 *)
-
{A(n,k)=if(k==0,1,if(n>0,sum(i=0,k,A(0,k-i)*A(n-1,i)), if(k==1,1,if(k==2,3,( (324*k^2-708*k+360)*A(0,k-1)-(371*k^2-1831*k+2250)*A(0,k-2)+(20*k^2-130*k+210)*A(0,k-3))/(16*k*(2*k-1)) )));)}
-
def f(n): # f = A003169
if (n<2): return 1
elif (n==2): return 3
else: return ((324*n^2-708*n+360)*f(n-1) - (371*n^2-1831*n+2250)*f(n-2) + (20*n^2-130*n+210)*f(n-3))/(16*n*(2*n-1))
@CachedFunction
def A(n, k): # A = 100324
if (n==0): return f(k)
elif (k==0): return 1
else: return sum( A(0,k-j)*A(n-1, j) for j in range(k+1) )
def T(n,k): return A(n-k,k)
flatten([[T(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Jan 31 2023
A108424
Number of paths from (0,0) to (3n,0) that stay in the first quadrant, consist of steps u=(2,1), U=(1,2), or d=(1,-1) and do not touch the x-axis, except at the endpoints.
Original entry on oeis.org
2, 6, 34, 238, 1858, 15510, 135490, 1223134, 11320066, 106830502, 1024144482, 9945711566, 97634828354, 967298498358, 9659274283650, 97119829841854, 982391779220482, 9990160542904134, 102074758837531810, 1047391288012377774, 10788532748880319298
Offset: 1
a(2) = 6 because we have uudd, uUddd, Ududd, UdUddd, Uuddd and UUdddd.
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Emeric Deutsch, Problem 10658: Another Type of Lattice Path, American Math. Monthly, 107, 2000, 368-370.
- M. von Bell and M. Yip, Schröder combinatorics and nu-associahedra, arXiv:2006.09804 [math.CO], 2020.
-
A:=(2/3)*sqrt((z+3)/z)*sin((1/3)*arcsin(sqrt(z)*(z+18)/(z+3)^(3/2)))-1/3: G:=z*A+z*A^2: Gser:=series(G,z=0,28): seq(coeff(Gser,z^n),n=1..25);
a:=proc(n) if n=1 then 2 else (n*2^n*binomial(2*n,n)/((2*n-1)*(n+1)))*sum(binomial(n-1,j)^2/2^j/binomial(n+j+1,j),j=0..n-1) fi end: seq(a(n),n=1..19);
# Alternative:
a := n -> 2*binomial(3*n - 2, 2*n - 1)*hypergeom([2 - 2*n, 1 - n], [2 - 3*n], -1)/n:
seq(simplify(a(n)), n = 1..21); # Peter Luschny, Jun 14 2021
-
Table[(n*2^n*Binomial[2*n,n]/((2n-1)*(n+1))) * Sum[(Binomial[n-1,j])^2/ (2^j * Binomial[n+j+1,j]), {j,0,n-1}], {n,1,20}] (* Vaclav Kotesovec, Oct 17 2012 *)
A365847
Expansion of (1/x) * Series_Reversion( x*(1-x)^4/(1+x)^4 ).
Original entry on oeis.org
1, 8, 96, 1368, 21440, 356968, 6197408, 110947768, 2033381760, 37963483592, 719495148768, 13806129179928, 267693334199616, 5236670783633960, 103227182363423008, 2048451544990578552, 40888361539777714944, 820400146864231266184
Offset: 0
-
a(n) = sum(k=0, n, binomial(4*n+k+3, k)*binomial(4*(n+1), n-k))/(n+1);
A084078
Length of list created by n substitutions k -> Range[-abs(k+1), abs(k-1), 2] starting with {0}.
Original entry on oeis.org
1, 2, 4, 10, 24, 66, 172, 498, 1360, 4066, 11444, 34970, 100520, 312066, 911068, 2862562, 8457504, 26824386, 80006116, 255680170, 768464312, 2471150402, 7474561164, 24161357010, 73473471344, 238552980386, 728745517972
Offset: 0
{0}, {-1,1}, {0,2,-2,0}, {-1,1,-3,-1,1,-1,1,3,-1,1}
-
I:=[1,2,4,10]; [n le 4 select I[n] else (6*(35*n^2-125*n+14)*Self(n-1) + (275*n^4 -1870*n^3 +3757*n^2 -1268*n -1806)*Self(n-2) -6*(5*n^2-5*n-28)*Self(n-3) + (n-5)*(n-3)*(25*n^2-45*n-28)*Self(n-4))/((n-1)*(n+1)*(25*n^2-95*n+42)): n in [1..41]]; // G. C. Greubel, Nov 24 2022
-
Join[{1}, 2*Rest@CoefficientList[InverseSeries[Series[(-1 -6*n -8*n^2 + (1+ 2*n)^2*Sqrt[1+4*n])/(2*(n +4*n^2 +4*n^3)), {n, 0, 40}]], n]]
Length/@ Flatten/@ NestList[# /. k_Integer :> Range[-Abs[k+1], Abs[k-1], 2] &, {0}, 12]
-
def replace(L): return [i for k in L for i in range(-abs(k + 1), 1 + abs(k - 1), 2)]
def aList(upto, L=[0]): return [1] + [len((L := replace(L))) for _ in range(upto)]
print(aList(12)) # Peter Luschny, Nov 16 2024
-
@CachedFunction
def a(n): # a = A084078
if (n<4): return (1,2,4,10)[n]
else: return (6*(35*n^2 -55*n -76)*a(n-1) +(275*n^4-770*n^3-203*n^2+1736*n-912)*a(n-2) -6*(5*n^2+5*n-28)*a(n-3) +(n-4)*(n-2)*(25*n^2+5*n-48)*a(n-4))/(n*(n+2)*(25*n^2-45*n-28))
[a(n) for n in range(41)] # G. C. Greubel, Nov 24 2022
A371676
G.f. satisfies A(x) = 1 + x * A(x)^2 * (1 + A(x)^(1/2))^2.
Original entry on oeis.org
1, 4, 40, 524, 7824, 126228, 2143544, 37750812, 683194912, 12628104740, 237388091208, 4524456276524, 87228274533040, 1698091537435444, 33332913873239640, 659038408936005692, 13112372856351746112, 262338658739430857796, 5274545338183090647656
Offset: 0
-
a(n, r=2, t=4, u=1) = r*sum(k=0, n, binomial(n, k)*binomial(t*n+u*k+r, n)/(t*n+u*k+r));
A371678
G.f. satisfies A(x) = 1 + x * A(x)^3 * (1 + A(x)^(1/2))^2.
Original entry on oeis.org
1, 4, 56, 1068, 23504, 561972, 14183880, 371911132, 10031990560, 276589937892, 7759696110808, 220805824681740, 6357540660485616, 184876232243020564, 5422016433851400552, 160187931368799105468, 4763038761416835095616, 142426926824923660491716
Offset: 0
-
a(n, r=2, t=6, u=1) = r*sum(k=0, n, binomial(n, k)*binomial(t*n+u*k+r, n)/(t*n+u*k+r));
Showing 1-10 of 27 results.
Comments