cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A032768 a(n) = floor( n(n+1)(n+2)(n+3)(n+4) / (n+(n+1)+(n+2)+(n+3)+(n+4)) ).

Original entry on oeis.org

0, 8, 36, 100, 224, 432, 756, 1232, 1900, 2808, 4004, 5544, 7488, 9900, 12852, 16416, 20672, 25704, 31600, 38456, 46368, 55440, 65780, 77500, 90720, 105560, 122148, 140616, 161100, 183744, 208692, 236096, 266112, 298900, 334628, 373464, 415584
Offset: 0

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

Programs

  • Magma
    [Floor(n*(n+1)*(n+3)*(n+4)/5): n in [0..36]]; // Bruno Berselli, Jun 20 2012
  • Mathematica
    CoefficientList[Series[4*x*(1+x)*(2-x+2*x^2)/((1-x)^5*(1+x+x^2+x^3+x^4)),{x,0,40}],x] (* Vincenzo Librandi, Jun 20 2012 *)

Formula

G.f.: 4*x*(1+x)*(2-x+2*x^2)/((1-x)^5*(1+x+x^2+x^3+x^4)).
a(n) = floor( n(n+1)(n+3)(n+4)/5 ). [Bruno Berselli, Jun 20 2012]

A032770 Integer quotients of n(n + 1)(n + 2)(n + 3)(n + 4) / (n+(n+1)+(n+2)+(n+3)+(n+4)).

Original entry on oeis.org

0, 8, 36, 224, 432, 756, 1232, 2808, 4004, 5544, 7488, 12852, 16416, 20672, 25704, 38456, 46368, 55440, 65780, 90720, 105560, 122148, 140616, 183744, 208692, 236096, 266112, 334628, 373464, 415584, 461168, 563472, 620576, 681912, 747684
Offset: 0

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

Sequence contains all numbers of form i(5i+c)(5i+d)(5i+e), with from {<1,3,4>, <-1,-3,-4>, <-1,2,3>, <1,-2,-3>}. - Ralf Stephan, May 16 2005

Crossrefs

Programs

  • Mathematica
    Select[Times@@(Range[0,4]+#)/Total[Range[0,4]+#]&/@ Range[0,60],IntegerQ] (* Harvey P. Dale, Mar 17 2011 *)

A271324 a(n) = n + floor(n/4) + (n mod 4).

Original entry on oeis.org

0, 2, 4, 6, 5, 7, 9, 11, 10, 12, 14, 16, 15, 17, 19, 21, 20, 22, 24, 26, 25, 27, 29, 31, 30, 32, 34, 36, 35, 37, 39, 41, 40, 42, 44, 46, 45, 47, 49, 51, 50, 52, 54, 56, 55, 57, 59, 61, 60, 62, 64, 66, 65, 67, 69, 71, 70, 72, 74, 76, 75, 77, 79, 81, 80, 82, 84, 86, 85, 87, 89
Offset: 0

Views

Author

Bruno Berselli, Apr 04 2016

Keywords

Comments

Sort the terms in increasing order and add 1 to get sequence A032769.

Crossrefs

Cf. A032769.
Cf. numbers of the form m + floor(m/k) + (m mod k): A028242 (k=-2), A000004 (k=-1), A005843 (k=1), A007494 (k=2), A063224 (k=3).

Programs

  • Magma
    [n + Floor(n/4) + (n mod 4): n in [0..80]];
    
  • Mathematica
    Table[n + Floor[n/4] + Mod[n, 4], {n, 0, 80}]
  • Maxima
    makelist(n + floor(n/4) + mod(n, 4), n, 0, 80);
    
  • PARI
    vector(80, n, n--; n + floor(n/4) + n%4)
    
  • Python
    def A271324(n): return n+(n>>2)+(n&3) # Chai Wah Wu, Jan 29 2023
  • Sage
    [n + floor(n/4) + n%4 for n in (0..80)]
    

Formula

O.g.f.: x*(2 + 2*x + 2*x^2 - x^3)/((1 - x)^2*(1 + x + x^2 + x^3)).
E.g.f.: ((6 + 5*x)*sinh(x) + (3 + 5*x)*cosh(x) - 3*(sin(x) + cos(x)))/4.
a(n) = 1 + (10*n - 6*(-1)^((n-1)*n/2) - 3*(-1)^n + 1)/8.
a(4*k + r) = 5*k + 2*r, with r = 0, 1, 2 or 3.
a(n + 4*k) = a(n) + 5*k.
Showing 1-3 of 3 results.