cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A032768 a(n) = floor( n(n+1)(n+2)(n+3)(n+4) / (n+(n+1)+(n+2)+(n+3)+(n+4)) ).

Original entry on oeis.org

0, 8, 36, 100, 224, 432, 756, 1232, 1900, 2808, 4004, 5544, 7488, 9900, 12852, 16416, 20672, 25704, 31600, 38456, 46368, 55440, 65780, 77500, 90720, 105560, 122148, 140616, 161100, 183744, 208692, 236096, 266112, 298900, 334628, 373464, 415584
Offset: 0

Views

Author

Patrick De Geest, May 15 1998

Keywords

Crossrefs

Programs

  • Magma
    [Floor(n*(n+1)*(n+3)*(n+4)/5): n in [0..36]]; // Bruno Berselli, Jun 20 2012
  • Mathematica
    CoefficientList[Series[4*x*(1+x)*(2-x+2*x^2)/((1-x)^5*(1+x+x^2+x^3+x^4)),{x,0,40}],x] (* Vincenzo Librandi, Jun 20 2012 *)

Formula

G.f.: 4*x*(1+x)*(2-x+2*x^2)/((1-x)^5*(1+x+x^2+x^3+x^4)).
a(n) = floor( n(n+1)(n+3)(n+4)/5 ). [Bruno Berselli, Jun 20 2012]

A032769 Numbers that are congruent to {0, 1, 2, 4} mod 5.

Original entry on oeis.org

0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 39, 40, 41, 42, 44, 45, 46, 47, 49, 50, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

Also, numbers m such that m*(m+1)*(m+2)*(m+3)*(m+4)/(m+(m+1)+(m+2)+(m+3)+(m+4)) is an integer.

Crossrefs

Programs

Formula

a(n) = (1/8)*(10*n-11+(-1)^n+2*(-1)^floor(n/2)). - Ralf Stephan, Jun 09 2005
a(n) = floor((5*n-4)/4). - Gary Detlefs, Mar 06 2010
G.f.: x^2*(1+x+2*x^2+x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 30 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (10*n-11+i^(2*n)+(1+i)*I^(-n)+(1-i)*i^n)/8 where i=sqrt(-1).
a(2k) = A047209(k), a(2k-1) = A047215(k). (End)
E.g.f.: (4 + sin(x) + cos(x) + (5*x - 6)*sinh(x) + 5*(x - 1)*cosh(x))/4. - Ilya Gutkovskiy, May 31 2016
Sum_{n>=2} (-1)^n/a(n) = log(5)/4 + 3*sqrt(5)*log(phi)/10 - sqrt(1-2/sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 10 2021

Extensions

Better description from Michael Somos, Jun 08 2000
Showing 1-2 of 2 results.