A032769 Numbers that are congruent to {0, 1, 2, 4} mod 5.
0, 1, 2, 4, 5, 6, 7, 9, 10, 11, 12, 14, 15, 16, 17, 19, 20, 21, 22, 24, 25, 26, 27, 29, 30, 31, 32, 34, 35, 36, 37, 39, 40, 41, 42, 44, 45, 46, 47, 49, 50, 51, 52, 54, 55, 56, 57, 59, 60, 61, 62, 64, 65, 66, 67, 69, 70, 71, 72, 74, 75, 76, 77, 79, 80, 81, 82, 84, 85
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[Floor((5*n - 4)/4) : n in [1..80]]; // Wesley Ivan Hurt, May 30 2016
-
Maple
seq(floor((5*n-4)/4), n=1..69); # Gary Detlefs, Mar 06 2010
-
Mathematica
Table[Floor[(5n - 4)/4], {n, 80}] (* Wesley Ivan Hurt, May 30 2016 *)
-
PARI
a(n)=5*n\4-1 \\ Charles R Greathouse IV, Jan 02 2025
Formula
a(n) = (1/8)*(10*n-11+(-1)^n+2*(-1)^floor(n/2)). - Ralf Stephan, Jun 09 2005
a(n) = floor((5*n-4)/4). - Gary Detlefs, Mar 06 2010
G.f.: x^2*(1+x+2*x^2+x^3) / ( (1+x)*(1+x^2)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, May 30 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (10*n-11+i^(2*n)+(1+i)*I^(-n)+(1-i)*i^n)/8 where i=sqrt(-1).
E.g.f.: (4 + sin(x) + cos(x) + (5*x - 6)*sinh(x) + 5*(x - 1)*cosh(x))/4. - Ilya Gutkovskiy, May 31 2016
Sum_{n>=2} (-1)^n/a(n) = log(5)/4 + 3*sqrt(5)*log(phi)/10 - sqrt(1-2/sqrt(5))*Pi/10, where phi is the golden ratio (A001622). - Amiram Eldar, Dec 10 2021
Extensions
Better description from Michael Somos, Jun 08 2000
Comments