cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033042 Sums of distinct powers of 5.

Original entry on oeis.org

0, 1, 5, 6, 25, 26, 30, 31, 125, 126, 130, 131, 150, 151, 155, 156, 625, 626, 630, 631, 650, 651, 655, 656, 750, 751, 755, 756, 775, 776, 780, 781, 3125, 3126, 3130, 3131, 3150, 3151, 3155, 3156, 3250, 3251, 3255, 3256, 3275, 3276, 3280, 3281, 3750, 3751
Offset: 0

Views

Author

Keywords

Comments

Numbers without any base-5 digits larger than 1.
a(n) modulo 2 is the Prouhet-Thue-Morse sequence A010060. - Philippe Deléham, Oct 17 2011
Values of k where A008977(k) does not end with 0. - Henry Bottomley, Nov 09 2022

Crossrefs

For generating functions Product_{k>=0} (1 + a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.
Row 5 of array A104257.

Programs

  • Julia
    function a(n)
        m, r, b = n, 0, 1
        while m > 0
            m, q = divrem(m, 2)
            r += b * q
            b *= 5
        end
    r end; [a(n) for n in 0:49] |> println # Peter Luschny, Jan 03 2021
    
  • Maple
    a:= proc(n) local m, r, b; m, r, b:= n, 0, 1;
          while m>0 do r:= r+b*irem(m, 2, 'm'); b:= b*5 od; r
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Mar 16 2013
  • Mathematica
    t = Table[FromDigits[RealDigits[n, 2], 5], {n, 1, 100}]
    (* Clark Kimberling, Aug 02 2012 *)
    FromDigits[#,5]&/@Tuples[{0,1},7] (* Harvey P. Dale, May 22 2018 *)
  • PARI
    a(n) = subst(Pol(binary(n)), 'x, 5);
    vector(50, i, a(i-1))  \\ Gheorghe Coserea, Sep 15 2015
    
  • PARI
    a(n)=fromdigits(binary(n),5) \\ Charles R Greathouse IV, Jan 11 2017
    
  • Python
    def A033042(n): return int(bin(n)[2:],5) # Chai Wah Wu, Oct 30 2024

Formula

a(n) = Sum_{i=0..m} d(i)*5^i, where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
Numbers j such that the coefficient of x^j is > 0 in Product_{k>=0} (1 + x^(5^k)). - Benoit Cloitre, Jul 29 2003
a(n) = A097251(n)/4.
a(2n) = 5*a(n), a(2n+1) = a(2n)+1.
a(n) = Sum_{k>=0} A030308(n,k)*5^k. - Philippe Deléham, Oct 17 2011
liminf a(n)/n^(log(5)/log(2)) = 1/4 and limsup a(n)/n^(log(5)/log(2)) = 1. - Gheorghe Coserea, Sep 15 2015
G.f.: (1/(1 - x))*Sum_{k>=0} 5^k*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jun 04 2017

Extensions

Extended by Ray Chandler, Aug 03 2004