A033042 Sums of distinct powers of 5.
0, 1, 5, 6, 25, 26, 30, 31, 125, 126, 130, 131, 150, 151, 155, 156, 625, 626, 630, 631, 650, 651, 655, 656, 750, 751, 755, 756, 775, 776, 780, 781, 3125, 3126, 3130, 3131, 3150, 3151, 3155, 3156, 3250, 3251, 3255, 3256, 3275, 3276, 3280, 3281, 3750, 3751
Offset: 0
Links
- T. D. Noe, Table of n, a(n) for n = 0..1023
- David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
- K. Dilcher and L. Ericksen, Hyperbinary expansions and Stern polynomials, Elec. J. Combin, 22, 2015, #P2.24.
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 45.
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
Crossrefs
For generating functions Product_{k>=0} (1 + a*x^(b^k)) for the following values of (a,b) see: (1,2) A000012 and A000027, (1,3) A039966 and A005836, (1,4) A151666 and A000695, (1,5) A151667 and A033042, (2,2) A001316, (2,3) A151668, (2,4) A151669, (2,5) A151670, (3,2) A048883, (3,3) A117940, (3,4) A151665, (3,5) A151671, (4,2) A102376, (4,3) A151672, (4,4) A151673, (4,5) A151674.
Row 5 of array A104257.
Programs
-
Julia
function a(n) m, r, b = n, 0, 1 while m > 0 m, q = divrem(m, 2) r += b * q b *= 5 end r end; [a(n) for n in 0:49] |> println # Peter Luschny, Jan 03 2021
-
Maple
a:= proc(n) local m, r, b; m, r, b:= n, 0, 1; while m>0 do r:= r+b*irem(m, 2, 'm'); b:= b*5 od; r end: seq(a(n), n=0..100); # Alois P. Heinz, Mar 16 2013
-
Mathematica
t = Table[FromDigits[RealDigits[n, 2], 5], {n, 1, 100}] (* Clark Kimberling, Aug 02 2012 *) FromDigits[#,5]&/@Tuples[{0,1},7] (* Harvey P. Dale, May 22 2018 *)
-
PARI
a(n) = subst(Pol(binary(n)), 'x, 5); vector(50, i, a(i-1)) \\ Gheorghe Coserea, Sep 15 2015
-
PARI
a(n)=fromdigits(binary(n),5) \\ Charles R Greathouse IV, Jan 11 2017
-
Python
def A033042(n): return int(bin(n)[2:],5) # Chai Wah Wu, Oct 30 2024
Formula
a(n) = Sum_{i=0..m} d(i)*5^i, where Sum_{i=0..m} d(i)*2^i is the base-2 representation of n.
Numbers j such that the coefficient of x^j is > 0 in Product_{k>=0} (1 + x^(5^k)). - Benoit Cloitre, Jul 29 2003
a(n) = A097251(n)/4.
a(2n) = 5*a(n), a(2n+1) = a(2n)+1.
a(n) = Sum_{k>=0} A030308(n,k)*5^k. - Philippe Deléham, Oct 17 2011
liminf a(n)/n^(log(5)/log(2)) = 1/4 and limsup a(n)/n^(log(5)/log(2)) = 1. - Gheorghe Coserea, Sep 15 2015
G.f.: (1/(1 - x))*Sum_{k>=0} 5^k*x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Jun 04 2017
Extensions
Extended by Ray Chandler, Aug 03 2004
Comments