A037521 Base-4 digits are, in order, the first n terms of the periodic sequence with initial period 2, 1, 0.
2, 9, 36, 146, 585, 2340, 9362, 37449, 149796, 599186, 2396745, 9586980, 38347922, 153391689, 613566756, 2454267026, 9817068105, 39268272420, 157073089682, 628292358729, 2513169434916, 10052677739666, 40210710958665
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,0,1,-4).
Programs
-
Magma
[Floor(4^(n+1)/7) : n in [1..30]]; // Vincenzo Librandi, Jun 25 2011
-
Maple
seq(floor(4^(n+1)/7),n=1..30); # Mircea Merca, Dec 26 2010
-
Mathematica
Table[FromDigits[PadRight[{}, n, {2, 1, 0}], 4], {n, 30}] (* Harvey P. Dale, Jul 03 2017 *)
Formula
a(n) = floor(4^(n+1)/7). - Mircea Merca, Dec 26 2010
G.f.: x*(2+x) / ( (1-x)*(1-4*x)*(1+x+x^2) ).
a(n) = 4*a(n-1) + a(n-3) - 4*a(n-4).
a(n) = 4^(n+1)/7 - 1/3 - (-1)^(n mod 3)*A167380(4 + (n mod 3))/21 = 2*A033140(n) + A033140(n-1). - R. J. Mathar, Jan 08 2011
Comments