cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A248213 Values of y in A033210 (primes of the form x^2+13*y^2).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 1, 1, 2, 3, 4, 4, 1, 2, 3, 1, 3, 5, 4, 5, 4, 3, 7, 7, 7, 2, 7, 6, 1, 5, 6, 8, 8, 4, 8, 6, 2, 4, 9, 6, 5, 9, 9, 8, 7, 9, 2, 4, 10, 8, 10, 6, 4, 9, 5, 11, 1, 5, 11, 6, 2, 10, 1, 12, 4, 2, 7, 1, 11, 12, 10, 3, 7, 5, 1, 10, 12, 13, 7, 13, 13, 11, 10, 13, 4, 5, 11, 13, 14, 14, 4, 3, 6, 12, 11, 7, 12, 14, 8, 2
Offset: 1

Views

Author

Zak Seidov, Oct 04 2014

Keywords

Crossrefs

Cf. A033210, A248212 (values of x).

Formula

a(n) = sqrt((A033210(n)-A248212(n)^2)/13).

A248212 Values of x in A033210 (primes of the form x^2+13*y^2).

Original entry on oeis.org

0, 2, 4, 1, 3, 7, 10, 12, 11, 8, 5, 7, 16, 15, 14, 18, 16, 8, 15, 14, 19, 22, 2, 4, 6, 25, 8, 17, 28, 22, 19, 5, 7, 27, 11, 23, 31, 29, 4, 25, 28, 8, 10, 19, 24, 14, 35, 33, 1, 23, 9, 31, 35, 20, 34, 6, 40, 36, 8, 35, 41, 21, 42, 1, 41, 43, 36, 44, 20, 11, 27, 44, 38, 42, 46, 29, 17, 4, 40, 10, 12, 28
Offset: 1

Views

Author

Zak Seidov, Oct 04 2014

Keywords

Crossrefs

Cf. A033210, A248213 (values of y).

Formula

a(n) = sqrt(A033210(n)-13*A248213(n)^2).

A106856 Primes of the form x^2 + xy + 2y^2, with x and y nonnegative.

Original entry on oeis.org

2, 11, 23, 37, 43, 53, 71, 79, 107, 109, 127, 137, 149, 151, 163, 193, 197, 211, 233, 239, 263, 281, 317, 331, 337, 373, 389, 401, 421, 431, 443, 463, 487, 491, 499, 541, 547, 557, 569, 599, 613, 617, 641, 653, 659, 673, 683, 739, 743, 751, 757, 809, 821
Offset: 1

Views

Author

T. D. Noe, May 09 2005, Apr 28 2008

Keywords

Comments

Discriminant=-7. Binary quadratic forms ax^2 + bxy + cy^2 have discriminant d = b^2 - 4ac.
Consider sequences of primes produced by forms with -100
The Mathematica function QuadPrimes2 is useful for finding the primes less than "lim" represented by the positive definite quadratic form ax^2 + bxy + cy^2 for any a, b and c satisfying a>0, c>0, and discriminant d<0. It does this by examining all x>=0 and y>=0 in the ellipse ax^2 + bxy + cy^2 <= lim. To find the primes generated by positive and negative x and y, compute the union of QuadPrimes2[a,b,c,lim] and QuadPrimes2[a,-b,c,lim]. - T. D. Noe, Sep 01 2009
For other programs see the "Binary Quadratic Forms and OEIS" link.

References

  • David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
  • L. E. Dickson, History of the Theory of Numbers, Vol. 3, Chelsea, 1923.

Crossrefs

Discriminants in the range -3 to -100: A007645 (d=-3), A002313 (d=-4), A045373, A106856 (d=-7), A033203 (d=-8), A056874, A106857 (d=-11), A002476 (d=-12), A033212, A106858-A106861 (d=-15), A002144, A002313 (d=-16), A106862-A106863 (d=-19), A033205, A106864-A106865 (d=-20), A106866-A106869 (d=-23), A033199, A084865 (d=-24), A002476, A106870 (d=-27), A033207 (d=-28), A033221, A106871-A106874 (d=-31), A007519, A007520, A106875-A106876 (d=-32), A106877-A106881 (d=-35), A040117, A068228, A106882 (d=-36), A033227, A106883-A106888 (d=-39), A033201, A106889 (d=-40), A106890-A106891 (d=-43), A033209, A106282, A106892-A106893 (d=-44), A033232, A106894-A106900 (d=-47), A068229 (d=-48), A106901-A106904 (d=-51), A033210, A106905-A106906 (d=-52), A033235, A106907-A106913 (d=-55), A033211, A106914-A106917 (d=-56), A106918-A106922 (d=-59), A033212, A106859 (d=-60), A106923-A106930 (d=-63), A007521, A106931 (d=-64), A106932-A106933 (d=-67), A033213, A106934-A106938 (d=-68), A033246, A106939-A106948 (d=-71), A106949-A106950 (d=-72), A033212, A106951-A106952 (d=-75), A033214, A106953-A106955 (d=-76), A033251, A106956-A106962 (d=-79), A047650, A106963-A106965 (d=-80), A106966-A106970 (d=-83), A033215, A102271, A102273, A106971-A106974 (d=-84), A033256, A106975-A106983 (d=-87), A033216, A106984 (d=-88), A106985-A106989 (d=-91), A033217 (d=-92), A033206, A106990-A107001 (d=-95), A107002-A107008 (d=-96), A107009-A107013 (d=-99).
Other collections of quadratic forms: A139643, A139827.
For a more comprehensive list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Cf. also A242660.

Programs

  • Mathematica
    QuadPrimes2[a_, b_, c_, lmt_] := Module[{p, d, lst = {}, xMax, yMax}, d = b^2 - 4a*c; If[a > 0 && c > 0 && d < 0, xMax = Sqrt[lmt/a]*(1+Abs[b]/Floor[Sqrt[-d]])]; Do[ If[ 4c*lmt + d*x^2 >= 0, yMax = ((-b)*x + Sqrt[4c*lmt + d*x^2])/(2c), yMax = 0 ]; Do[p = a*x^2 + b*x*y + c*y^2; If[ PrimeQ[ p]  && p <= lmt && !MemberQ[ lst, p], AppendTo[ lst, p]], {y, 0, yMax}], {x, 0, xMax}]; Sort[ lst]];
    QuadPrimes2[1, 1, 2, 1000]
    (This is a corrected version of the old, incorrect, program QuadPrimes. - N. J. A. Sloane, Jun 15 2014)
    max = 1000; Table[yy = {y, 1, Floor[Sqrt[8 max - 7 x^2]/4 - x/4]}; Table[ x^2 + x y + 2 y^2, yy // Evaluate], {x, 0, Floor[Sqrt[max]]}] // Flatten // Union // Select[#, PrimeQ]& (* Jean-François Alcover, Oct 04 2018 *)
  • PARI
    list(lim)=my(q=Qfb(1,1,2), v=List([2])); forprime(p=2, lim, if(vecmin(qfbsolve(q, p))>0, listput(v,p))); Vec(v) \\ Charles R Greathouse IV, Aug 05 2016

Extensions

Removed old Mathematica programs - T. D. Noe, Sep 09 2009
Edited (pointed out error in QuadPrimes, added new version of program, checked and extended b-file). - N. J. A. Sloane, Jun 06 2014

A248221 Numbers m such that 52*m + 1 is prime.

Original entry on oeis.org

1, 3, 6, 10, 13, 18, 21, 24, 25, 31, 36, 39, 40, 43, 45, 46, 49, 55, 60, 64, 66, 73, 78, 85, 91, 94, 96, 109, 115, 123, 124, 126, 129, 130, 133, 138, 139, 141, 144, 145, 151, 154, 159, 165, 168, 171, 174, 178, 181, 189, 193, 195, 196, 201, 211, 223, 225, 229
Offset: 1

Author

Zak Seidov, Oct 04 2014

Keywords

Comments

All terms are == {0,1} mod 3, because 52*(3k+2) + 1 is divisible by 3. - Zak Seidov, Oct 05 2014

Crossrefs

Programs

  • Maple
    A248221:=n->`if`(isprime(52*n+1), n, NULL): seq(A248221(n), n=1..500); # Wesley Ivan Hurt, Oct 05 2014
  • Mathematica
    Select[Range[250], PrimeQ[52# + 1] &] (* Alonso del Arte, Oct 04 2014 *)
  • PARI
    for(n=1,10^3,if(isprime(52*n+1),print1(n,", "))) \\ Derek Orr, Oct 05 2014

Formula

a(n) = (A142508(n) - 1)/52.

Extensions

More terms from Wesley Ivan Hurt, Oct 05 2014

A139642 Irregular triangle where row n gives the congruence (mod 4N) for the primes represented by the quadratic form x^2+Ny^2, where N=A000926(n) is a convenient number.

Original entry on oeis.org

1, 2, 1, 2, 3, 1, 3, 7, 1, 5, 9, 13, 1, 5, 9, 1, 7, 1, 7, 9, 11, 15, 23, 25, 1, 9, 17, 25, 1, 13, 25, 1, 9, 11, 19, 1, 13, 25, 37, 1, 9, 13, 17, 25, 29, 49, 1, 19, 31, 49, 1, 9, 17, 25, 33, 41, 49, 57, 1, 19, 25, 43, 49, 67, 1, 25, 37, 1, 9, 15, 23, 25, 31, 47, 49, 71, 81, 1, 25, 49, 73, 1, 9
Offset: 1

Author

T. D. Noe, Apr 28 2008

Keywords

Comments

Each row begins with 1. For example, the 12th row is for N=13. The numbers in that row are 1, 9, 17, 25, 29 and 49, which means that the primes represented by the quadratic form x^2+13y^2 (A033210) are congruent to 1, 9, 17, 25, 29,or 49 (mod 52). Cox lists some of these congruences on page 36 of his book. As mentioned by Cox, for these N, every term of the congruence has the form b^2 or N+b^2 for some integer b. In some cases, the congruences can be simplified. For instance, for N=18 (A106950), the congruence is 1, 19, 25, 43, 49, 67 (mod 72), which can be simplified to 1, 19 (mod 24).

Examples

			1, 2,
1, 2, 3,
1, 3, 7,
1, 5, 9, 13,
1, 5, 9,
1, 7,
1, 7, 9, 11, 15, 23, 25,
1, 9, 17, 25,
1, 13, 25,
1, 9, 11, 19,
1, 13, 25, 37,
1, 9, 13, 17, 25, 29, 49,
1, 19, 31, 49,
1, 9, 17, 25, 33, 41, 49, 57,
1, 19, 25, 43, 49, 67,
1, 25, 37,
1, 9, 15, 23, 25, 31, 47, 49, 71, 81,
1, 25, 49, 73,
...
		

References

  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989, Section 3.

Crossrefs

See the Binary Quadratic Forms and OEIS link for full list of primes generated by x^2+Ny^2, where N is a convenient number.

A247881 Numbers of the form x^2 + 13*y^2.

Original entry on oeis.org

0, 1, 4, 9, 13, 14, 16, 17, 22, 25, 29, 36, 38, 49, 52, 53, 56, 61, 62, 64, 68, 77, 81, 88, 94, 100, 101, 113, 116, 117, 118, 121, 126, 133, 134, 142, 144, 152, 153, 157, 166, 169, 173, 181, 182, 196, 198, 208, 209, 212, 217, 221, 224, 225, 233, 238, 244, 248, 256, 257, 261, 269
Offset: 1

Author

Alonso del Arte, Sep 25 2014

Keywords

Comments

Norms of numbers in Z[sqrt(-13)].

Crossrefs

Cf. A033210 (subsequence of primes).

Programs

  • Maple
    N:= 1000: # for terms <= N
    S:= {seq(seq(x^2 + 13*y^2, x=0 .. floor(sqrt(N-13*y^2))),y=0..floor(sqrt(N/13)))}:
    sort(convert(S,list)); # Robert Israel, Jun 19 2025

A248019 Values of x in equation A142508(n)=x^2+13y^2.

Original entry on oeis.org

1, 12, 14, 14, 25, 27, 25, 14, 1, 40, 1, 27, 38, 40, 12, 14, 1, 53, 14, 1, 51, 40, 27, 64, 64, 14, 66, 64, 77, 77, 79, 66, 79, 77, 25, 38, 77, 40, 1, 79, 64, 53, 12, 92, 90, 51, 66, 77, 25, 64, 92, 77, 1, 79, 64, 53, 1, 103, 38, 12, 14, 53, 1, 77, 116, 79, 116, 92, 118, 118, 77, 103, 66, 118, 38
Offset: 1

Author

Zak Seidov, Oct 06 2014

Keywords

Examples

			a(1)=1 because A142508(1)=53=1^2+13*2^2 (x=1,y=2);
a(2)=12 because A142508(2)=157=12^2+13*1^2 (x=12, y=1).
		

Crossrefs

Cf. A033210, A142508, A248221, A248019(values of y).

Programs

  • Mathematica
    f[n_] := FindInstance[n == x^2 + 13 y^2 && x > 0 && y > 0, {x, y}, Integers][[1, 1, 2]]; f@# & /@ Select[ Prime@ Range@ 1840, Mod[#, 52] == 1 &] (* Robert G. Wilson v, Oct 06 2014 *)

A248368 Primes p such that 52*p + 1 is prime.

Original entry on oeis.org

3, 13, 31, 43, 73, 109, 139, 151, 181, 193, 211, 223, 229, 283, 349, 379, 409, 421, 463, 523, 601, 619, 691, 769, 823, 853, 1021, 1033, 1069, 1153, 1231, 1279, 1303, 1453, 1459, 1471, 1531, 1663, 1693, 1723, 1741, 1783, 1831, 1873, 1933, 2029, 2131, 2251, 2269, 2293, 2593, 2671, 2749, 2791
Offset: 1

Author

Zak Seidov, Oct 05 2014

Keywords

Comments

Or, primes in A248221. Subsequence of A248221. Note that a(1..6) coincide with A171517(1..6).

Crossrefs

Programs

  • Maple
    A248368:=n->`if`(isprime(52*n+1) and isprime(n), n, NULL): seq(A248368(n), n=1..4000); # Wesley Ivan Hurt, Oct 05 2014
  • Mathematica
    s = {}; Do[If[PrimeQ[1 + 52*(p = Prime[n])], AppendTo[s, p]], {n, 500}]; s
    Select[Prime[Range[500]],PrimeQ[52#+1]&] (* Harvey P. Dale, Aug 15 2017 *)
  • PARI
    forprime(p=1,10^4,if(isprime(52*p+1),print1(p,", "))) \\ Derek Orr, Oct 05 2014

A248372 Numbers m such that both p = 52*m + 1 and q = 52*p + 1 are prime.

Original entry on oeis.org

36, 39, 60, 126, 171, 189, 195, 300, 315, 405, 420, 435, 504, 540, 570, 606, 720, 756, 816, 876, 960, 1089, 1221, 1224, 1260, 1329, 1365, 1371, 1389, 1404, 1530, 1554, 1674, 1740, 1785, 1791, 1914, 1959, 2085, 2244, 2304, 2334, 2376, 2451, 2454, 2520, 2631, 2646, 2715, 2799, 2976
Offset: 1

Author

Zak Seidov, Oct 05 2014

Keywords

Comments

All terms are divisible by 3, because if m == 1 or 2 (mod 3), either q or p is divisible by 3.

Crossrefs

Subsequence of A248221.

Programs

  • Mathematica
    s={};Do[If[PrimeQ[p=52*n+1]&&PrimeQ[52*p+1],AppendTo[s,n]],{n,3000}];s
    Select[Range[3000],AllTrue[{52#+1,53+2704#},PrimeQ]&] (* Harvey P. Dale, Mar 21 2025 *)
  • PARI
    for(n=1,10^4,p=52*n+1;if(isprime(p)&&isprime(52*p+1),print1(n,", "))) \\ Derek Orr, Oct 06 2014

A248409 Least prime of the form x^2+13*n^2.

Original entry on oeis.org

13, 53, 181, 233, 389, 757, 641, 857, 1069, 1301, 1609, 1873, 2213, 2549, 3121, 3329, 3761, 4261, 4729, 5209, 5737, 6301, 6977, 7489, 8161, 8837, 9733, 10193, 10937, 11701, 12497, 13313, 14173, 15053, 16069, 17137, 18121, 18773, 19777, 20809, 21997, 23053, 24137, 25169, 27109, 27509
Offset: 1

Author

Zak Seidov, Oct 06 2014

Keywords

Comments

Subsequence of A033210 (Primes of the form x^2+13*y^2).

Examples

			a(1)=13 because the least prime of the form x^2+13*1^2 is 13 (at x=0).
a(100)=130121 because the least prime of the form x^2+13*100^2 is 130121 (at x=11).
a(200)=520361 because the least prime of the form x^2+13*200^2 is 520361 (at x=19).
		

Crossrefs

Programs

  • PARI
    a(n) = {x = 0; while (!isprime(p=x^2+13*n^2), x++); p;} \\ Michel Marcus, Oct 06 2014
Showing 1-10 of 12 results. Next