cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A033259 Decimal expansion of Laplace's limit constant.

Original entry on oeis.org

6, 6, 2, 7, 4, 3, 4, 1, 9, 3, 4, 9, 1, 8, 1, 5, 8, 0, 9, 7, 4, 7, 4, 2, 0, 9, 7, 1, 0, 9, 2, 5, 2, 9, 0, 7, 0, 5, 6, 2, 3, 3, 5, 4, 9, 1, 1, 5, 0, 2, 2, 4, 1, 7, 5, 2, 0, 3, 9, 2, 5, 3, 4, 9, 9, 0, 9, 7, 1, 8, 5, 3, 0, 8, 6, 5, 1, 1, 2, 7, 7, 2, 4, 9, 6, 5, 4, 8, 0, 2, 5, 9, 8, 9, 5, 8, 1, 8, 1, 6, 8
Offset: 0

Views

Author

Keywords

Comments

Maximum value taken by the function x/cosh(x), which occurs at A085984. - Hrothgar, Mar 12 2014
Given two equal coaxial circular rings of diameter D located in two parallel planes distant d apart, this constant is the maximum value of d / D so that there exists a catenoid resting on these two rings. - Robert FERREOL, Feb 07 2019
The maximum value of the eccentricity for which the Lagrange series expansion for the solution to Kepler's equation converges. Laplace (1827) calculated the value 0.66195. The Italian astronomer Francesco Carlini (1783 - 1862) found the limit 0.66 five years before Laplace (Sacchetti, 2020). - Amiram Eldar, Aug 17 2020

Examples

			0.662743419349181580974742097109252907056233549115022417520392534990971853086...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 266-268.
  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 402.
  • John Oprea, The Mathematics of Soap Films: Explorations with Maple, Amer. Math. Soc., 2000, p. 183.

Crossrefs

Programs

  • Mathematica
    x/.FindRoot[ x Exp[ Sqrt[ 1+x^2 ] ]/(1+Sqrt[ 1+x^2 ])==1, {x, 1} ]
    Sqrt[x^2 - 1] /. FindRoot[ x == Coth[x], {x, 1}, WorkingPrecision -> 30 ] (* Leo C. Stein, Jul 30 2017 *)
    RealDigits[Sqrt[Root[{# - (1 + #)/E^(2 #) - 1 &, 1.1996786}]^2 - 1], 10, 100][[1]] (* Eric W. Weisstein, Jul 15 2022 *)
  • PARI
    sqrt(solve(u=1,2,tanh(u)-1/u)^2-1) \\ M. F. Hasler, Feb 01 2011

Formula

Equals sqrt(A085984^2-1). - Jean-François Alcover, May 14 2013

A033260 Continued fraction for Laplace's limit constant.

Original entry on oeis.org

0, 1, 1, 1, 27, 1, 1, 1, 8, 2, 154, 2, 4, 1, 5, 1, 1, 2, 1601, 2, 63, 1, 2, 12, 17, 9, 2, 1, 1, 57, 1, 6, 2, 4, 3, 10, 1, 6, 2, 1, 3, 4, 2, 1, 31, 3, 6, 1, 1, 4, 2, 1, 1, 1, 1, 1, 1, 14, 1, 4, 1, 2, 2, 1, 97, 1, 52, 2, 4, 1, 1, 5, 13, 1, 1, 3, 6, 2, 3, 3, 2, 2, 1, 1, 2, 28, 2, 3, 1, 4, 2, 1, 4
Offset: 0

Views

Author

Keywords

References

  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 266-268.

Crossrefs

Cf. A033259 (decimal expansion), A033261, A033262, A033263.

Programs

  • Mathematica
    ContinuedFraction[Sqrt[x^2-1]/.FindRoot[x==Coth[x], {x,1}, WorkingPrecision -> 250], 121] (* G. C. Greubel, Dec 13 2024 *)

Extensions

Offset changed by Andrew Howroyd, Jul 04 2024

A033261 Position of first occurrence of n in the continued fraction for the Laplace's limit constant.

Original entry on oeis.org

1, 9, 34, 12, 14, 31, 100, 8, 25, 35, 101, 23, 72, 57, 750, 270, 24, 365, 363, 482, 191, 642, 821, 541, 393, 632, 4, 85, 2049, 617, 44, 201, 941, 182, 206, 862, 3104, 1295, 2122, 258, 1576, 5551, 158, 3353, 3870, 114, 506, 1669, 9646, 1127, 445, 66, 1804
Offset: 1

Views

Author

Keywords

Comments

The continued fraction expansion is indexed [a_0; a_1, a_2, a_3, ...].

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 266-268.

Crossrefs

Formula

A033260(a(n)) = n. - Andrew Howroyd, Sep 12 2024

Extensions

More terms from Michel ten Voorde Jun 20 2003
Terms decreased by 1 for consistency with offset change in A033260 by Andrew Howroyd, Sep 12 2024

A033263 Positions of the incrementally largest terms in the continued fraction for Laplace's limit constant.

Original entry on oeis.org

1, 4, 10, 18, 1800, 2079, 6560, 7688, 11310, 12437, 24708, 63577
Offset: 1

Views

Author

Keywords

Comments

The continued fraction expansion is indexed [a_0; a_1, a_2, a_3, ...].

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 266-268.

Crossrefs

Formula

A033260(a(n)) = A033262(n). - Andrew Howroyd, Sep 12 2024

Extensions

More terms from Michel ten Voorde Jun 20 2003
Terms decreased by 1 for consistency with offset change in A033260 by Andrew Howroyd, Sep 12 2024
Showing 1-4 of 4 results.