A248916 Decimal expansion of gamma = 8*lambda^2, a critical threshold of a boundary value problem, where lambda is Laplace's limit constant A033259.
3, 5, 1, 3, 8, 3, 0, 7, 1, 9, 1, 2, 5, 1, 6, 1, 2, 0, 6, 2, 0, 7, 8, 3, 7, 0, 9, 3, 2, 3, 8, 8, 2, 3, 5, 8, 7, 1, 0, 9, 1, 3, 4, 2, 1, 1, 9, 5, 1, 2, 8, 4, 3, 6, 8, 1, 8, 2, 5, 4, 1, 8, 5, 2, 5, 3, 4, 9, 2, 1, 8, 6, 0, 8, 7, 7, 3, 5, 3, 0, 6, 2, 2, 4, 5, 1, 3, 9, 8, 4, 8, 8, 7, 6, 5, 9, 9, 9, 7, 5, 7, 3, 9, 5
Offset: 1
Examples
3.5138307191251612062078370932388235871...
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.8 Laplace limit constant, p. 266.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..20000
- Steven R. Finch, Errata and Addenda to Mathematical Constants, p. 32.
- Eric Weisstein's MathWorld, Laplace Limit
Programs
-
Mathematica
digits = 104; lambda = x /. FindRoot[x Exp[Sqrt[1 + x^2]]/(1 + Sqrt[1 + x^2]) == 1, {x, 1}, WorkingPrecision -> digits + 5]; gamma = 8*lambda^2; RealDigits[gamma, 10, digits] // First
Comments