cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033273 Number of nonprime divisors of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 3, 4, 1, 5, 1, 5, 2, 2, 2, 7, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 8, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 9, 1, 2, 4, 6, 2, 5, 1, 4, 2, 5, 1, 10, 1, 2, 4, 4, 2, 5, 1, 8, 4, 2, 1, 9, 2, 2, 2, 6, 1, 9, 2, 4, 2, 2, 2, 10, 1, 4, 4, 7, 1, 5, 1, 6
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

Formula

a(n) = A000005(n) - A001221(n).
a((n)) = n and a(m) <> n for m < A055079(n). - Reinhard Zumkeller, Dec 16 2013
G.f.: Sum_{k>=1} (x^k - x^prime(k))/((1 - x^k)*(1 - x^prime(k))). - Ilya Gutkovskiy, Jan 17 2017
Dirichlet g.f.: zeta(s)*(zeta(s)-primezeta(s)). - Benedict W. J. Irwin, Jul 11 2018
Sum_{k=1..n} a(k) ~ n*log(n) - n*log(log(n)) + (2*gamma - 1 - B)*n, where gamma is Euler's constant (A001620) and B is Mertens's constant (A077761). - Amiram Eldar, Nov 27 2022

Extensions

More terms from Reinhard Zumkeller, Sep 02 2003
Corrected error in offset. - Jaroslav Krizek, May 04 2009
Extended by Ray Chandler, Aug 07 2010