cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033486 a(n) = n*(n + 1)*(n + 2)*(n + 3)/2.

Original entry on oeis.org

0, 12, 60, 180, 420, 840, 1512, 2520, 3960, 5940, 8580, 12012, 16380, 21840, 28560, 36720, 46512, 58140, 71820, 87780, 106260, 127512, 151800, 179400, 210600, 245700, 285012, 328860, 377580, 431520, 491040, 556512, 628320, 706860, 792540, 885780, 987012
Offset: 0

Views

Author

Keywords

Comments

a(n) is the area of an irregular quadrilateral with vertices at (1,1), (n+1, n+2), ((n+1)^2, (n+2)^2) and ((n+1)^3, (n+2)^3). - Art Baker, Dec 08 2018

Crossrefs

Programs

  • GAP
    List([0..40],n->n*(n+1)*(n+2)*(n+3)/2); # Muniru A Asiru, Dec 08 2018
    
  • Magma
    [n*(n+1)*(n+2)*(n+3)/2: n in [0..40]]; // Vincenzo Librandi, Apr 28 2011
    
  • Maple
    [seq(12*binomial(n+3,4),n=0..32)]; # Zerinvary Lajos, Nov 24 2006
  • Mathematica
    Table[n*(n + 1)*(n + 2)*(n + 3)/2, {n, 0, 50}] (* David Nacin, Mar 01 2012 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,12,60,180,420},40] (* Harvey P. Dale, Feb 04 2015 *)
  • PARI
    a(n)=n*(n+1)*(n+2)*(n+3)/2 \\ Charles R Greathouse IV, Oct 07 2015
    
  • Sage
    [12*binomial(n+3,4) for n in range(40)] # G. C. Greubel, Dec 08 2018

Formula

a(n) = 6*A034827(n+3) = 12*A000332(n+3).
G.f.: 12*x/(1 - x)^5. - Colin Barker, Mar 01 2012
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) with a(0) = 0, a(1) = 12, a(2) = 60, a(3) = 180, a(4) = 420. - Harvey P. Dale, Feb 04 2015
E.g.f.: (24*x + 36*x^2 + 12*x^3 + x^4)*exp(x)/2. - Franck Maminirina Ramaharo, Dec 08 2018
From Amiram Eldar, Sep 04 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/9.
Sum_{n>=1} (-1)^(n+1)/a(n) = 8*(3*log(2)-2)/9. (End)