cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A033488 a(n) = n*(n+1)*(n+2)*(n+3)/6.

Original entry on oeis.org

0, 4, 20, 60, 140, 280, 504, 840, 1320, 1980, 2860, 4004, 5460, 7280, 9520, 12240, 15504, 19380, 23940, 29260, 35420, 42504, 50600, 59800, 70200, 81900, 95004, 109620, 125860, 143840, 163680, 185504, 209440, 235620, 264180, 295260, 329004, 365560, 405080
Offset: 0

Views

Author

Keywords

Comments

With two initial 0, convolution of the oblong numbers (A002378) with the nonnegative even numbers (A005843). - Bruno Berselli, Oct 24 2016

Crossrefs

1/beta(n, 4) in A061928.
Convolution of the oblong numbers with the odd numbers: A008911.
Fourth column of A003506.

Programs

Formula

a(n) = n*C(3+n, 3). - Zerinvary Lajos, Jan 10 2006
G.f.: 4*x/(1-x)^5. - Colin Barker, Mar 01 2012
G.f.: (2*x/(1-x))*W(0), where W(k) = 1 + 1/( 1 - x*(k+2)*(k+4)/( x*(k+2)*(k+4) + (k+1)*(k+2)/W(k+1) ) ); (continued fraction). - Sergei N. Gladkovskii, Aug 24 2013
From Amiram Eldar, Jun 02 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/3.
Sum_{n>=1} (-1)^(n+1)/a(n) = 8*log(2) - 16/3. (End)
E.g.f.: exp(x)*x*(24 + 36*x + 12*x^2 + x^3)/6. - Stefano Spezia, Jul 11 2025